S'abonner

Interpretable artificial intelligence to optimise use of imatinib after resection in patients with localised gastrointestinal stromal tumours: an observational cohort study - 30/07/24

Doi : 10.1016/S1470-2045(24)00259-6 
Dimitris Bertsimas, ProfPhD a, , Georgios Antonios Margonis, MD PhD a, b, , Suleeporn Sujichantararat, PhD a, Angelos Koulouras, BSc a, Yu Ma, BSc a, Cristina R Antonescu, ProfMD c, Murray F Brennan, ProfMD b, Javier Martín-Broto, ProfMD f, g, h, Seehanah Tang, BSc a, Piotr Rutkowski, ProfMD PhD i, Martin E Kreis, ProfMD j, Katharina Beyer, ProfMD j, Jane Wang, MD k, Elzbieta Bylina, MD PhD i, Pawel Sobczuk, MD PhD i, Antonio Gutierrez, MD PhD f, g, h, Bhumika Jadeja, MSc b, William D Tap, ProfMD d, Ping Chi, ProfMD PhD d, e, l, Samuel Singer, ProfMD b,
a Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA 
b Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA 
c Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA 
d Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA 
e Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA 
f Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain 
g Medical Oncology Department, Hospital General de Villalba, Madrid, Spain 
h Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Madrid, Spain 
i Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland 
j Department of General and Visceral Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany 
k Department of Surgery, University of California San Francisco, San Francisco, CA, USA 
l Department of Medicine, Weill Cornell Medical College, New York, NY, USA 

* Correspondence to: Prof Samuel Singer, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA Department of Surgery Memorial Sloan Kettering Cancer Center New York NY 10065 USA

Summary

Background

Current guidelines recommend use of adjuvant imatinib therapy for many patients with gastrointestinal stromal tumours (GISTs); however, its optimal treatment duration is unknown and some patient groups do not benefit from the therapy. We aimed to apply state-of-the-art, interpretable artificial intelligence (ie, predictions or prescription logic that can be easily understood) methods on real-world data to establish which groups of patients with GISTs should receive adjuvant imatinib, its optimal treatment duration, and the benefits conferred by this therapy.

Methods

In this observational cohort study, we considered for inclusion all patients who underwent resection of primary, non-metastatic GISTs at the Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY, USA) between Oct 1, 1982, and Dec 31, 2017, and who were classified as intermediate or high risk according to the Armed Forces Institute of Pathology Miettinen criteria and had complete follow-up data with no missing entries. A counterfactual random forest model, which used predictors of recurrence (mitotic count, tumour size, and tumour site) and imatinib duration to infer the probability of recurrence at 7 years for a given patient under each duration of imatinib treatment, was trained in the MSKCC cohort. Optimal policy trees (OPTs), a state-of-the-art interpretable AI-based method, were used to read the counterfactual random forest model by training a decision tree with the counterfactual predictions. The OPT recommendations were externally validated in two cohorts of patients from Poland (the Polish Clinical GIST Registry), who underwent GIST resection between Dec 1, 1981, and Dec 31, 2011, and from Spain (the Spanish Group for Research in Sarcomas), who underwent resection between Oct 1, 1987, and Jan 30, 2011.

Findings

Among 1007 patients who underwent GIST surgery in MSKCC, 117 were included in the internal cohort; for the external cohorts, the Polish cohort comprised 363 patients and the Spanish cohort comprised 239 patients. The OPT did not recommend imatinib for patients with GISTs of gastric origin measuring less than 15·9 cm with a mitotic count of less than 11·5 mitoses per 5 mm 2 or for those with small GISTs ( < 5·4 cm) of any site with a count of less than 11·5 mitoses per 5 mm 2 . In this cohort, the OPT cutoffs had a sensitivity of 92·7% (95% CI 82·4–98·0) and a specificity of 33·9% (22·3–47·0). The application of these cutoffs in the two external cohorts would have spared 38 (29%) of 131 patients in the Spanish cohort and 44 (35%) of 126 patients in the Polish cohort from unnecessary treatment with imatinib. Meanwhile, the risk of undertreating patients in these cohorts was minimal (sensitivity 95·4% [95% CI 89·5–98·5] in the Spanish cohort and 92·4% [88·3–95·4] in the Polish cohort). The OPT tested 33 different durations of imatinib treatment ( < 5 years) and found that 5 years of treatment conferred the most benefit.

Interpretation

If the identified patient subgroups were applied in clinical practice, as many as a third of the current cohort of candidates who do not benefit from adjuvant imatinib would be encouraged to not receive imatinib, subsequently avoiding unnecessary toxicity on patients and financial strain on health-care systems. Our finding that 5 years is the optimal duration of imatinib treatment could be the best source of evidence to inform clinical practice until 2028, when a randomised controlled trial with the same aims is expected to report its findings.

Funding

National Cancer Institute.

Le texte complet de cet article est disponible en PDF.

Plan


© 2024  Elsevier Ltd. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 25 - N° 8

P. 1025-1037 - août 2024 Retour au numéro
Article précédent Article précédent
  • Imaging with [89Zr]Zr-DFO-SC16.56 anti-DLL3 antibody in patients with high-grade neuroendocrine tumours of the lung and prostate: a phase 1/2, first-in-human trial
  • Salomon Tendler, Mark P Dunphy, Matthew Agee, Joseph O’Donoghue, Rania G Aly, Noura J Choudhury, Adam Kesner, Assen Kirov, Audrey Mauguen, Marina K Baine, Heiko Schoder, Wolfgang A Weber, Natasha Rekhtman, Serge K Lyashchenko, Lisa Bodei, Michael J Morris, Jason S Lewis, Charles M Rudin, John T Poirier
| Article suivant Article suivant
  • Perioperative nivolumab versus observation in patients with renal cell carcinoma undergoing nephrectomy (PROSPER ECOG-ACRIN EA8143): an open-label, randomised, phase 3 study
  • Mohamad E Allaf, Se-Eun Kim, Viraj Master, David F McDermott, Lauren C Harshman, Suzanne M Cole, Charles G Drake, Sabina Signoretti, Mahmut Akgul, Nicholas Baniak, Elsa Li-Ning, Matthew B Palmer, Hamid Emamekhoo, Nabil Adra, Hristos Kaimakliotis, Yasser Ged, Phillip M Pierorazio, E Jason Abel, Mehmet A Bilen, Kenneth Ogan, Helen H Moon, Krishna A Ramaswamy, Eric A Singer, Tina M Mayer, Jay Lohrey, Vitaly Margulis, Jessie Gills, Scott E Delacroix, Mark J Waples, Andrew C James, Peng Wang, Toni Choueiri, M Dror Michaelson, Anil Kapoor, Daniel Y Heng, Brian Shuch, Bradley C Leibovich, Primo N Lara, Judith Manola, Deborah Maskens, Dena Battle, Robert Uzzo, Gennady Bratslavsky, Naomi B Haas, Michael A Carducci

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Elsevier s'engage à rendre ses eBooks accessibles et à se conformer aux lois applicables. Compte tenu de notre vaste bibliothèque de titres, il existe des cas où rendre un livre électronique entièrement accessible présente des défis uniques et l'inclusion de fonctionnalités complètes pourrait transformer sa nature au point de ne plus servir son objectif principal ou d'entraîner un fardeau disproportionné pour l'éditeur. Par conséquent, l'accessibilité de cet eBook peut être limitée. Voir plus

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.