Médecine

Paramédical

Autres domaines


S'abonner

Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation - 27/10/16

Unicité et propriété lagrangienne des solutions manquant d'intégrabilité de l'équation de continuité

Doi : 10.1016/j.crma.2016.10.009 
Laura Caravenna a , Gianluca Crippa b
a Dipartimento di Matematica ‘Tullio Levi-Civita’, Università di Padova, via Trieste 63, 35121 Padova, Italy 
b Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland 

Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le jeudi 27 octobre 2016

Abstract

We deal with the uniqueness of distributional solutions to the continuity equation with a Sobolev vector field and with the property of being a Lagrangian solution, i.e. transported by a flow of the associated ordinary differential equation. We work in a framework of lack of local integrability of the solution, in which the classical DiPerna–Lions theory of uniqueness and Lagrangianity of distributional solutions does not apply due to the insufficient integrability of the commutator. We introduce a general principle to prove that a solution is Lagrangian: we rely on a disintegration along the unique flow and on a new directional Lipschitz extension lemma, used to construct a large class of test functions in the Lagrangian distributional formulation of the continuity equation.

Le texte complet de cet article est disponible en PDF.

Résumé

On étudie l'unicité des solutions au sens des distributions de l'équation de continuité avec des champs de vecteurs Sobolev et la propriété d'être une solution lagrangienne, c'est-à-dire une solution transportée par le flot de l'équation différentielle ordinaire associée au champ de vecteurs. On travaille dans un cadre où les solutions considérées manquent d'intégrabilité locale et où on ne peut pas appliquer la théorie classique de DiPerna–Lions d'unicité des solutions au sens des distributions et de la propriété d'être lagrangienne, parce que l'on n'a pas assez d'intégrabilité pour le commutateur. On introduit un principe général pour démontrer la propriété d'être une solution lagrangienne : notre technique se base sur une désintégration le long du flot unique et sur un lemme d'extension lipschitzienne directionnelle, qui nous permet de construire une vaste famille de fonctions tests pour la formulation lagrangienne au sens des distributions de l'équation de continuité.

Le texte complet de cet article est disponible en PDF.

Plan


© 2016  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.