Médecine

Paramédical

Autres domaines


S'abonner

Intelligence artificielle appliquée à la radiothérapie - 20/04/17

Artificial intelligence applied to radiation oncology

Doi : 10.1016/j.canrad.2016.09.021 
J.-E. Bibault a, b, , A. Burgun b, c, d, P. Giraud a, b
a Service d’oncologie radiothérapie, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France 
b Université Paris Descartes, Paris Sorbonne Cité, 20, rue Leblanc, 75015 Paris, France 
c Service d’informatique biomédicale, hôpital européen Georges-Pompidou, 20, rue Leblanc, 75015 Paris, France 
d Inserm, UMR 1138 Team 22 information sciences to support personalized medicine, 20, rue Leblanc, 75015 Paris, France 

Auteur correspondant.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le jeudi 20 avril 2017
Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder

Résumé

La réalisation d’essais comparatifs randomisés en radiothérapie peut être difficile lorsque de nouvelles modalités de traitement émergent. Ainsi, peu ou pas d’études de phase 3 ont prouvé l’intérêt de la radiothérapie conformationnelle avec modulation d’intensité dans la majorité de ses indications actuelles. Un nouveau paradigme se développe, consistant à exploiter de larges bases de données afin de répondre à certaines questions cliniques ou translationnelles. Au-delà des bases nationales (la SEER [Surveillance, Epidemiology, and End Results] ou la NCDB [National Cancer Database]), pour lesquelles le niveau de détails est souvent jugé insuffisant au regard l’hétérogénéité des populations et des traitements étudiés, la généralisation des dossiers médicaux électroniques permet maintenant au contraire de dresser des profils phénotypiques très détaillés. En parallèle, les systèmes de radiothérapie enregistrent avec précision les traitements planifiés et réalisés. Les techniques d’intelligence artificielle et d’apprentissage automatisé permettent d’exploiter de façon incrémentale ces bases de données massives afin de dégager des hypothèses permettant de mieux personnaliser nos traitements. Cette revue détaille comment ces méthodes ont déjà été exploitées dans la littérature.

Le texte complet de cet article est disponible en PDF.

Abstract

Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies.

Le texte complet de cet article est disponible en PDF.

Mots clés : Radiothérapie, Modèle prédictif, Intelligence artificielle, Apprentissage automatisé

Keywords : Radiation oncology, Predictive model, Artificial intelligence, Machine learning


Plan


© 2017  Société française de radiothérapie oncologique (SFRO). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.