S'abonner

Josephson ladders as a model system for 1D quantum phase transitions - 19/10/18

Une chaîne supraconductrice comme simulateur de transitions de phases quantiques en une dimension

Doi : 10.1016/j.crhy.2018.09.002 
Matthew T. Bell a, Benoît Douçot b, Michael E. Gershenson c, Lev B. Ioffe b, , Aleksandra Petković d
a Department of Electrical Engineering, University of Massachusetts Boston, Boston, MA 02125, USA 
b LPTHE, Université Pierre-et-Marie-Curie, 75005 Paris, France 
c Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA 
d LPT, IRSAMC, Université Paul-Sabatier, 31062 Toulouse cedex 4, France 

Corresponding author.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Friday 19 October 2018
Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder

Abstract

We propose a novel platform for the study of quantum phase transitions in one dimension (1D QPT). The system consists of a specially designed chain of asymmetric SQUIDs; each SQUID contains several Josephson junctions with one junction shared between the nearest-neighbor SQUIDs. We develop the theoretical description of the low-energy part of the spectrum. In particular, we show that the system exhibits a quantum phase transition of Ising type. In the vicinity of the transition, the low-energy excitations of the system can be described by Majorana fermions. This allows us to compute the matrix elements of the physical perturbations in the low-energy sector. In the microwave experiments with this system, we explored the phase boundaries between the ordered and disordered phases and the critical behavior of the system's low-energy modes close to the transition. Due to the flexible chain design and control of the parameters of individual Josephson junctions, future experiments will be able to address the effects of non-integrability and disorder on the 1D QPT.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous proposons une nouvelle plateforme pour l'étude des transitions de phase quantiques en une dimension. Le système consiste en une chaîne de boucles de SQUID asymétriques spécialement configurées : chaque SQUID contient plusieurs jonctions Josephson, dont une partagée avec le SQUID voisin. Des expériences sous micro-ondes électromagnétiques nous ont permis d'explorer les lignes de transition entre phase ordonnée et phase désordonnée, ainsi que le comportement critique des états excités de plus basse énergie au voisinage de cette transition. Grâce à la flexibilité de la configuration des SQUIDS et à la possibilité de contrôler individuellement les paramètres de chaque jonction Josephson, ce système permettra d'explorer, lors de prochaines expériences, les effets de la non-intégrabilité ou du désordre sur cette transition de phase quantique en une dimension.

Le texte complet de cet article est disponible en PDF.

Keywords : Quantum simulations, Quantum phase transitions, Arrays of Josephson junctions, Transverse field Ising model

Mots-clés : Simulations quantiques, Transitions de phase quantiques, Chaînes des jonctions Josephson, Chaîne d'Ising quantique en champ transverse


Plan


© 2018  Publié par Elsevier Masson SAS de la part de Académie des sciences.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.