S'abonner

Preliminary Investigation of a 64-element Capacitive Micromachined Ultrasound Transducer (CMUT) Annular Array Designed for High Intensity Focused Ultrasound (HIFU) - 04/11/18

Doi : 10.1016/j.irbm.2018.09.001 
C.R. Bawiec a, , W.A. N'Djin a, G. Bouchoux a, N. Sénégond b, N. Guillen c, J.-Y. Chapelon a
a LabTAU, Inserm, Centre Léon Bérard, Université Lyon 1, Univ. Lyon, Lyon, F-69003, France 
b Vermon, Tours, 37038, France 
c EDAP TMS, Vaulx-en-Velin, 69120, France 

Corresponding author at: LabTAU, Inserm, Centre Léon Bérard, Université Lyon 1, Univ. Lyon, Lyon, F-69003, France.LabTAUInsermCentre Léon BérardUniversité Lyon 1Univ. LyonLyonF-69003France

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 12
Iconographies 10
Vidéos 0
Autres 0

Abstract

Background

Treatment of prostate cancer using endocavitary High Intensity Focused Ultrasound (HIFU) has become more commonplace since the first treatments in the 1990s. The gold standard HIFU strategy to treat prostate cancer is the complete thermal ablation of the entire prostate gland under real-time ultrasound (US) image guidance. A more desirable treatment and the current trend, however, is towards a focal treatment but more accurate and finely tunable thermal lesions are needed along with improved US imaging guidance. In this study, Capacitive Micromachined Ultrasound Transducer (CMUT) technology is being investigated, as they have shown recent promise for US imaging and potential to be used for HIFU therapy. They offer potential advantages over current piezoelectric designs in the context of ultrasound-guided HIFU (USgHIFU) focal therapies.

Objective

The presented study evaluates the ability of a planar annular array CMUT design to achieve HIFU dynamic focusing and feasibility of generating thermal lesions in biological tissues.

Method

The proposed CMUT design consists of a 64-element annular array for HIFU delivery with a space in the center that accommodates a high-resolution 256-element linear imaging array. The pressure field simulations of the HIFU portion of the array were performed using the Rayleigh integral method. The bioheat transfer equation was then used to predict lesion formation. The HIFU performances of the proposed CMUT phased-array design were compared to those of the device currently used in the clinic. Partial CMUT prototypes, including the therapeutic part only, were fabricated and experimentally characterized (electromechanical CMUT behavior, ultrasound pressure field distribution and acoustic intensity).

Results

The planar 64-element annular CMUT design is capable of dynamically focusing a 3 MHz ultrasound beam at distances ranging from 32 to 72 mm, comparable in size and shape to the ones obtained with the clinical device. The simulated ultrasound fields correlated well to experimental measurements. Visual observation and impedance measurements of the CMUT cells allowed direct estimation of the collapse and snapback voltages of the ring-elements. The surface acoustic intensity of the CMUT ring-elements with both AC driving and DC bias voltages can achieve over 6 W/cm2, shown in simulation to be compatible with the generation of thermal lesions. The electro-acoustic efficiency of the CMUT elements increased with increasing DC bias voltages to reach 31%, and remained stable with increasing AC driving voltages. The ultrasound energy could be dynamically focused from this planar CMUT array during several dozen of minutes.

Conclusion

This work demonstrates the feasibility of utilizing a planar CMUT probe for generating dynamic HIFU focusing and lesioning compatible with the ablation of prostate tissues under endocavitary treatment approach. Future investigations will consist of validating the lesioning capability experimentally both in vitro and in vivo.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

CMUT technology investigated for high intensity focused ultrasound HIFU therapy.
Planar CMUT annular array with CMUT linear array for ultrasound guided HIFU.
Simulation and experimental validation of focusing performed from 32–72 mm focal depth.
Acoustic intensities of over 6 W/cm2 achievable with the CMUT probe.
Future investigations will validate the generation of thermal lesions.

Le texte complet de cet article est disponible en PDF.

Plan


© 2018  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 39 - N° 5

P. 295-306 - novembre 2018 Retour au numéro
Article précédent Article précédent
  • Eight Weeks of Local Vibration Training Do Not Increase Tibialis Anterior Muscle Stiffness Evaluated by Supersonic Shear Imaging
  • R. Souron, T. Lapole
| Article suivant Article suivant
  • Laser-Generated Au Nanoparticles for Bio-Medical Applications
  • L. Torrisi, N. Restuccia

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.