S'abonner

Recent progress in the moving contact line problem: a review - 22/03/08

Yves Pomeau
Laboratoire ASCI, Bâtiment 506, 91405 Orsay cedex, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 16
Iconographies 0
Vidéos 0
Autres 0

Article rédigé à l'invitation des rédacteurs

Abstract

As pointed out long ago by Laplace, viscosity may become a large perturbation to capillary phenomena, especially close to solid surfaces where molecules may stick. A spectacular consequence of this is the impossibility for a triple line to move on a solid if the liquid/vapor interface is considered as a material surface and if the usual no slip boundary condition is enforced. As shown recently this specific phenomenon of contact line motion can be described by coupled van der Waals and fluid equations, yielding a rational theory that is divergence free and consistent with the equilibrium results. Far from the triple line, the equations of fluid mechanics are recovered in their usual form. In this approach, the contact line move close to the solid by evaporation or condensation, which requires (for evaporation) the molecules to jump above a high potential barrier on their way from the liquid to the vapor. An Arrhenius factor makes this process intrinsically slow, compared to molecular speeds. For (realistic) very small Arrhenius factors, the motion of the triple line induces a dynamical change of the functions in the van der Waals equations. This may lead to dynamical wetting and dewetting transitions, that is, to a change of the contact angle from a finite to a zero value or conversely. The dynamical wetting transition has been observed in liquids flowing down a plate (see Blake and Ruschak, Nature 282 (1979) 489-491) cusps on the contact line appear when it recedes faster than the speed of transition. Similar ideas account well also for the known sensitivity of contact line mobility to vapor pressure. To cite this article: Y. Pomeau, C. R. Mecanique 330 (2002) 207-222.

Le texte complet de cet article est disponible en PDF.

Résumé

Comme remarqué il y a longtemps par Laplace, la viscosité peut devenir une source de perturbation importante aux phénomènes capillaires, particulièrement près des surfaces solides auxquelles les particules fluides adhèrent. Une conséquence spectaculaire en est l'impossibilité pour la ligne triple de bouger sur un solide si l'on considère l'interface liquide/vapeur comme une surface matérielle et qu'on impose la condition de non glissement des fluides sur le solide. On a montré récemment que ce phénomène spécifique de mouvement de la ligne de contact peut être décrit en couplant les équations de van der Waals et fluides, ce qui conduit à une théorie rationelle sans divergence et qui reste cohérente avec les résultats de l'équilibre (sans mouvement). Loin de la ligne triple, les équations de la mécanique des fluides s'appliquent sous leur forme habituelle. Dans cette approche, la ligne de contact mobile se déplace près du solide par évaporation ou par condensation de vapeur, ce qui, dans le cas de l'évaporation, implique que les molécules passent du liquide à la vapeur en franchissant une barrière de potentiel élevée. Un facteur d'Arrhenius rend donc ce processus intrinséquement lent, comparé aux vitesses moléculaires. Pour des facteurs d'Arrhenius faibles (et réalistes) le mouvement de la ligne de contact induit un changement dynamique des fonctions entrant dans la théorie de van der Waals. Ce qui peut conduire à une transition de mouillage ou de démouillage, soit à un passage pour l'angle de contact d'une valeur finie à zéro ou reciproquement. La transition de mouillage dynamique a été observée pour des lames liquides descendant sur une plaque (voir Blake et Ruschak, Nature 282 (1979) 489-491) : des pointes apparaissent sur cette ligne quand le liquide se retire à une vitesse supérieure à la vitesse de transition. Des idées proches permettent de comprendre la sensibilité connue de la mobilité de la ligne de contact à la tension de vapeur. Pour citer cet article : Y. Pomeau, C. R. Mecanique 330 (2002) 207-222.

Le texte complet de cet article est disponible en PDF.

Keywords : computational fluid mechanics, moving contact line, phase field, kinetic retardation

Mots-clé : mécanique des fluides numérique, ligne de contact mobile, champ de phase, effets de retard dus à la cinétique


Plan

Plan indisponible

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 330 - N° 3

P. 207-222 - 2002 Retour au numéro
Article précédent Article précédent
  • Recovery of small electromagnetic inhomogeneities from partial boundary measurements
  • Habib Ammari, Alexander G. Ramm

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.