S'abonner

Sur la limite adiabatique des fonctions êta et zêta - 22/03/08

Sergiu Moroianu
Institutul de Matematică al Academiei Române, PO Box 1-764, RO-70700 Bucarest, Roumanie 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Note présentée par Jean-Michel Bismut

Résumé

Dans cette Note, on démontre l'existence de la limite adiabatique de la fonction η(s) d'un opérateur sur l'espace total d'une fibration au dessus de S1, construit à partir d'une famille d'opérateurs différentiels inversibles d'ordre 1. Nous identifions cette limite à l'holonomie d'une famille méromorphe de connexions dans le fibré trivial. Dans le même contexte, la fonction ζ diverge. On donne une formule pour les deux premiers coefficients du développement asymptotique. Le premier résultat reste vrai pour une famille non-inversible si on se restreint à s=0. Dans le cas d'une famille d'opérateurs de Dirac, on retrouve la formule d'holonomie de Bismut-Freed. Pour citer cet article : S. Moroianu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 131-134

Le texte complet de cet article est disponible en PDF.

Abstract

In this Note we prove the existence of the adiabatic limit of the η(s) function of an operator on the total space of a fibration over S1, constructed from an invertible family of first-order differential operators. We identify this limit as the holonomy of a meromorphic family of connections in the trivial bundle. In the same context, the ζ function diverges. We give a formula for the first two terms of the asymptotic expansion. The first result remains true for a non-invertible family if we restrict ourselves to s=0. For a family of Dirac operators, we retrieve the holonomy formula of Bismut-Freed. To cite this article: S. Moroianu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 131-134

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 334 - N° 2

P. 131-134 - janvier 2002 Retour au numéro
Article précédent Article précédent
  • Rough solutions of the Einstein vacuum equations
  • Sergiu Klainerman, Igor Rodnianski
| Article suivant Article suivant
  • Absolue continuité des lois jointes des intégrales stables multiples
  • Jean-Christophe Breton

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.