S'abonner

Strichartz estimates for the periodic non-elliptic Schrödinger equation - 22/11/12

Doi : 10.1016/j.crma.2012.10.029 
Nicolas Godet , Nikolay Tzvetkov
CNRS & Laboratoire de Mathématiques (UMR 8088), Université de Cergy-Pontoise, F-95000 Cergy-Pontoise, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Abstract

The purpose of this Note is to prove sharp Strichartz estimates with derivative losses for the non-elliptic Schrödinger equation posed on the 2-dimensional torus.

Le texte complet de cet article est disponible en PDF.

Résumé

Le but de cette Note est de démontrer des estimations de Strichartz optimales avec pertes de dérivées pour lʼéquation de Schrödinger non-elliptique posée sur le tore de dimension 2.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2012  Publié par Elsevier Masson SAS de la part de Académie des sciences.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 350 - N° 21-22

P. 955-958 - novembre 2012 Retour au numéro
Article précédent Article précédent
  • A functional framework for the Keller–Segel system: Logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities
  • Jean Dolbeault, Juan Campos
| Article suivant Article suivant
  • On the Davey–Stewartson system with singular initial data
  • E.J. Villamizar-Roa, J.E. Pérez-López

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.