S'abonner

Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches - 02/12/14

Doi : 10.1016/j.crhy.2014.09.002 
Jaona Randrianalisoa a, , Dominique Baillis b, ⁎⁎
a GRESPI, Université de Reims, EA 4694, Campus Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France 
b LaMCoS, INSA-Lyon, UMR CNRS 5259, 18-20, rue des Sciences, 69621 Villeurbanne cedex, France 

Corresponding author. Fax: +33 3 26 91 32 51.⁎⁎Corresponding author. Fax: +33 4 72 43 89 13.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 13
Iconographies 11
Vidéos 0
Autres 0

Abstract

The current paper presents an overview of traditional and recent models for predicting the thermal properties of solid foams with open- and closed-cells. Their effective thermal conductivity has been determined analytically by empirical or thermal-resistance-network-based models. Radiative properties crucial to obtain the radiative conductivity have been determined analytically by models based on the independent scattering theory. Powerful models combine three-dimensional (3D) foam modelling (by X-ray tomography, Voronoi tessellation method, etc.) and numerical solution of transport equations. The finite-element method (FEM) has been used to compute thermal conductivity due to solid network for which the computation cost remains reasonable. The effective conductivity can be determined from FEM results combined with the conductivity due to the fluid, which can be accurately evaluated by a simple formula for air or weakly conducting gas. The finite volume method seems well appropriate for solving the thermal problem in both the solid and fluid phases. The ray-tracing Monte Carlo method constitutes the powerful model for radiative properties. Finally, 3D image analysis of foams is useful to determine topological information needed to feed analytical thermal and radiative properties models.

Le texte complet de cet article est disponible en PDF.

Résumé

Cet article présente une vue globale des modèles traditionnels et récents de prédiction des propriétés thermiques et radiatives des mousses solides ayant des cellules ouvertes ou fermées. Leur conductivité thermique effective est déterminée par des modèles empiriques ou analytiques basés sur le réseau de résistances. Les propriétés radiatives nécessaires pour remonter à la conductivité radiative sont déterminées par des modèles analytiques basés sur la théorie de diffusion indépendante. Les approches robustes couplent la modélisation tridimensionnelle (3D) de mousses (par exemple, par la tomographie à rayons X, la mosaïque de Voronoï, etc.) et la résolution numérique des équations de transport. La conductivité thermique due à la phase solide est directement calculée par la méthode des éléments finis (EF), avec un coût de calcul raisonnable. La conductivité thermique effective, quant à elle, peut être déterminée à partir des calculs EF combinés avec la conductivité thermique due à la phase fluide. Cette dernière peut être évaluée de façon précise par des formules simples dans le cas de l'air ou d'un gaz faiblement conducteur thermique. Cependant, la méthode des volumes finis apparaît la mieux appropriée pour résoudre le problème thermique, à la fois dans la phase solide et la phase fluide. La méthode de Monte Carlo et de tracé de rayons constitue une approche solide pour calculer les propriétés radiatives. Enfin, la reconstruction d'image 3D des mousses est essentielle pour déterminer les informations topologiques nécessaires pour alimenter les modèles analytiques de conductivité thermique et de propriétés radiatives.

Le texte complet de cet article est disponible en PDF.

Keywords : Metallic foams, Ceramic foams, Polymer foams, Cellular materials, Voronoi tessellation, Laguerre–Voronoi tessellation

Mots-clés : Mousses métalliques, Mousses céramiques, Mousses polymères, Matériaux cellulaires, Mosaïque de Voronoï, Mosaïque de Voronoï–Laguerre


Plan


© 2014  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 15 - N° 8-9

P. 683-695 - octobre 2014 Retour au numéro
Article précédent Article précédent
  • Structural characterization of solid foams
  • Éric Maire, Jérôme Adrien, Clémence Petit
| Article suivant Article suivant
  • Structural properties of solid foams
  • Pierre Lhuissier

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.