Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    3 0 0 0

Comptes Rendus Mathématique
Volume 348, n° 1-2
pages 11-13 (janvier 2010)
Doi : 10.1016/j.crma.2009.11.016
Received : 4 August 2009 ;  accepted : 23 November 2009
Enumeration of the 50 fake projective planes
Énumération des 50 faux plans projectifs

Donald I. Cartwright a , Tim Steger b
a School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia 
b Struttura di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy 


Building upon the classification of Prasad and Yeung [Invent. Math. 168 (2007) 321–370], we have shown that there exist exactly 50 fake projective planes (up to homeomorphism; 100 up to biholomorphism), and exhibited each of them explicitly as a quotient of the unit ball in  . Some of these fake planes admit singular quotients by 3 element groups and three of these quotients are simply connected. Also exhibited are algebraic surfaces with   for any positive integer n .

The full text of this article is available in PDF format.

En partant de la classification de Prasad et Yeung [Invent. Math. 168 (2007) 321–370], nous montrons qu’il existe précisément 50 faux plans projectifs (à homéomorphisme près, 100 à biholomorphisme près), et présentons chacun comme un quotient de la boule unité de  . Certains de ces plans admettent des quotients singuliers par des groupes d’automorphismes à 3 éléments, et trois d’entre eux sont simplement connexes. De plus, pour chaque entier  , nous présentons des surfaces algébriques avec  .

The full text of this article is available in PDF format.

© 2009  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline