Epidemiology of perioperative anaphylaxis

Paul Michel Mertes¹, Gerald W. Volcheck², Lene H. Garvey⁴, Tonomori Takazawa³, Peter R. Platt⁵, Anne B. Guttormsen⁶, Charles Tacquard¹

Available online:

1. Nouvel Hôpital Civil, hôpitaux universitaires de Strasbourg, service d’anesthésie-réanimation chirurgicale, 1, place de l’Hôpital, BP 426, 67091 Strasbourg cedex, France
2. Mayo Clinic, Mayo Medical School, Division of Allergic Diseases, 200, First Street SW, Rochester, MN 55905, United States
3. Gunma University Graduate School of Medicine, Department of Anesthesiology, 3-39-22 Showa-machi, 371-8511 Maebashi, Japan
4. Allergy Clinic UA816-GE, Herlev and Gentofte Hospital, Danish Anaesthesia Allergy Centre, Kildegårdsvej 28, DK-2900 Hellerup, Denmark
5. Sir Charles Gairdner Hospital, 6009 Nedlands, Western Australia
6. Haukeland university Hospital, Clinical institute 1, Department of Anaesthesiology and Intensive care, Haukeland University, Hospital Jonas Lies v, 5021 Bergen, Norway

Correspondence:
Paul Michel Mertes, Nouvel Hôpital Civil, hôpitaux universitaires de Strasbourg, service d’anesthésie-réanimation chirurgicale, 1, place de l’Hôpital, BP 426, 67091 Strasbourg cedex, France.
paul-michel.mertes@chu-strasbourg.fr

Key points

Anaphylactic reactions may be either of immune (allergy, usually IgE-mediated, sometimes IgG-mediated) or non-immune origin.

The incidence of anaphylactic reactions during anaesthesia varies between countries ranging from 1/1250 to 1/18,600 per procedure.

In France, the estimated incidence of allergic reactions is 100.6 [76.2–125.3]/million procedure with a high female predominance (male: 55.4 [42.0–69.0], female: 154.9 [117.2–193.1]).

The proportion of IgE-mediated allergic reactions seems to be relatively similar between countries, ranging from 50 to 60%.

Substantial geographical variability regarding the different drugs or substances involved is reported.

Reactions involving neuromuscular blocking agents are a major cause in several countries but are less frequently reported in the United States or Denmark.

Reactions involving antibiotics, dyes or chlorhexidine are reported with a high and sometimes increasing frequency in most series.

Reactions to latex are rapidly decreasing as a result of primary and secondary prevention policy.

Regional differences are a strong incentive for repeated epidemiological surveys in different countries.
Introduction

Knowledge about the epidemiology of anaphylaxis has substantially improved within the last decades with the collection of data coming from a large number of publications referring to clinical practice, clinical and administrative databases or surveys conducted in specific populations. Although rare, anaphylaxis appears to be more frequent than initially assumed, and variation in incidence seems related to age [1], causes and geographical area [2]. Many studies suggest a rise in the incidence of anaphylaxis [2–5]. However, this increase remains controversial and could result from better identification and reporting of anaphylactic reactions [2,5].

Although data on the incidence of drug-induced anaphylaxis are relatively limited, these reactions are a recognized cause of morbidity and death in anaesthetic practice [6]. This review will briefly summarize the main information available in the literature on the epidemiology of perioperative anaphylaxis with specific considerations regarding differences between geographical areas.

Definition

The surveillance of perioperative anaphylaxis represents a statistical challenge, because these reactions are rare, random, and mostly independent from the successive exposure of patients to a low risk intervention [7]. Another weakness of any review of epidemiologic studies is the lack of consensus definition, the heterogeneous use of terms in the literature, the comprehensiveness of the evaluation, the type of medications/disinfectants used by region and the absence of clear insight into underlying pathophysiologic mechanisms. Severe immediate perioperative hypersensitivity reactions frequently result from the presence of allergen specific IgE (or IgG) antibodies, but reactions may also be related to other mechanisms including complement activation, direct histamine release or direct activation of the recently identified mast-cell specific MRGPRX2 receptor [8].

Incidence

For this review, a literature search was performed in the NCBI PubMed database with MeSH terms relevant to different epidemiologic aspects of perioperative anaphylaxis including triggers, geographical differences and trends. Retrieved results were then reviewed to summarize the current knowledge of anaphylaxis epidemiology (table I).

Since the pioneering work conducted in Australia [9], the United Kingdom [10] and France [11], several series from different countries have estimated the incidence of clinical anaphylaxis during anaesthesia to be in the range of 1 in 1250 to 10,000 anaesthetics [12].

Between 2009 and 2011, the Japanese Society of Anaesthesiologists (JSA) conducted a survey on intraoperative complications and reported a total of 237 cases of anaphylaxis during perioperative anesthesia in Japan [13].

Definition

The surveillance of perioperative anaphylaxis represents a statistical challenge, because these reactions are rare, random, and mostly independent from the successive exposure of patients to a low risk intervention [7]. Another weakness of any review of epidemiologic studies is the lack of consensus definition, the heterogeneous use of terms in the literature, the comprehensiveness of the evaluation, the type of medications/disinfectants used by region and the absence of clear insight into underlying pathophysiologic mechanisms. Severe immediate perioperative hypersensitivity reactions frequently result from the presence of allergen specific IgE (or IgG) antibodies, but reactions may also be related to other mechanisms including complement activation, direct histamine release or direct activation of the recently identified mast-cell specific MRGPRX2 receptor [8].

Incidence

For this review, a literature search was performed in the NCBI PubMed database with MeSH terms relevant to different epidemiologic aspects of perioperative anaphylaxis including triggers, geographical differences and trends. Retrieved results were then reviewed to summarize the current knowledge of anaphylaxis epidemiology (table I).

Since the pioneering work conducted in Australia [9], the United Kingdom [10] and France [11], several series from different countries have estimated the incidence of clinical anaphylaxis during anaesthesia to be in the range of 1 in 1250 to 10,000 anaesthetics [12].

Between 2009 and 2011, the Japanese Society of Anaesthesiologists (JSA) conducted a survey on intraoperative complications and reported a total of 237 cases of anaphylaxis during perioperative anesthesia in Japan [13].
Table I

Epidemiologic studies of perioperative anaphylaxis

<table>
<thead>
<tr>
<th>Selected studies</th>
<th>Location</th>
<th>Time period</th>
<th>Patients (n)</th>
<th>IgE-mediated (%)</th>
<th>Causal agents</th>
<th>Estimated incidence (All mechanisms)</th>
<th>Estimated incidence IgE-mediated</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savic, Kaura et al., 2015 [86]</td>
<td>UK</td>
<td>2015 (2 weeks)</td>
<td>13</td>
<td>–</td>
<td>All cause</td>
<td>1:353-1:2297</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mirone, Preziosi et al., 2015 [18]</td>
<td>Italy</td>
<td>2010-2014</td>
<td>193</td>
<td>28.5</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cho, Ju et al., 2015 [87]</td>
<td>South Korea</td>
<td>2005-2014</td>
<td>19</td>
<td>–</td>
<td>NMBAs</td>
<td>–</td>
<td>2.6: 100,000</td>
<td>–</td>
</tr>
<tr>
<td>Guyer, Saff et al., 2015 [36]</td>
<td>USA</td>
<td>2003-2012</td>
<td>73</td>
<td>18</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gonzales-Estrada, Pien et al., 2015</td>
<td>USA</td>
<td>2002-2013</td>
<td>30</td>
<td>57</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Opstrup, Malling et al., 2014 [88]</td>
<td>Denmark</td>
<td>2004-2012</td>
<td>22</td>
<td>+</td>
<td>Chlorhexidine</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Krishna, York et al., 2014 [62]</td>
<td>UK</td>
<td>2005-2012</td>
<td>161</td>
<td>64</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antunes, Kochuyt et al., 2014 [89]</td>
<td>Belgium</td>
<td>2007-2011</td>
<td>119</td>
<td>63.9</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gibbs, Sadleir et al., 2013 [29]</td>
<td>Australia</td>
<td>2000-2009</td>
<td>264</td>
<td>–</td>
<td>All cause</td>
<td>1:1,100</td>
<td>0-1.4</td>
<td>–</td>
</tr>
<tr>
<td>Gurrieri, Weingarten et al., 2011 [22]</td>
<td>USA</td>
<td>1992-2010</td>
<td>38</td>
<td>47.4</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mertes, Malinovsky et al., 2008 [71]</td>
<td>France</td>
<td>2004-2006</td>
<td>16</td>
<td>–</td>
<td>Dyes</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Lobera, Audicana et al., 2008 [21]</td>
<td>Spain</td>
<td>1998-2002</td>
<td>48</td>
<td>56</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chong, Caballero et al., 2008 [89]</td>
<td>UK</td>
<td>2005-2006</td>
<td>23</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Harboe, Gutormsen et al., 2005 [16]</td>
<td>Norway</td>
<td>1996-2001</td>
<td>83</td>
<td>71.1</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Charuluxananan, Punjasawadwong et al., 2005 [90]</td>
<td>Thailand</td>
<td>2004</td>
<td>–</td>
<td>–</td>
<td>All cause</td>
<td>2.1-10,000</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mertes, Laxenaire et al., 2004 [91]</td>
<td>France</td>
<td>2001-2002</td>
<td>712</td>
<td>69</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Escolano, Valero et al., 2002 [92]</td>
<td>Spain</td>
<td>1996-1997</td>
<td>32</td>
<td>62.5</td>
<td>All cause</td>
<td>1:10,263</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laxenaire, Mertes et al., 2001 [93]</td>
<td>France</td>
<td>1997-1998</td>
<td>467</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Garvey, Roed-Petersen et al., 2001 [23]</td>
<td>Denmark</td>
<td>1998-2001</td>
<td>68</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dietrich, Spath et al., 2001 [75]</td>
<td>Germany</td>
<td>1995-1996</td>
<td>3</td>
<td>+</td>
<td>Aprotinin</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laxenaire, 1999 [94]</td>
<td>France</td>
<td>1995-1996</td>
<td>1648</td>
<td>42</td>
<td>All cause</td>
<td>1:13,000</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thacker and Davis, 1999 [95]</td>
<td>New Zealand</td>
<td>1976-1995</td>
<td>151</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
The incidence of anaphylaxis based on this survey was approximately 1/18,600. This incidence included 13 cases of cardiac arrest and one fatal case. Anaphylaxis was the most common cause of complications during anaesthesia that was independent of surgery, aesthetic management, and pre-existing comorbidities [13].

Recently, a combined analysis of 3 different French databases, using a capture-recapture method has allowed a nationally based estimation of the incidence of immediate IgE-mediated allergic reactions occurring during anaesthesia, according to sex, age, and causal substance. This report has confirmed the general view that immediate-type hypersensitivity reactions are largely

Table 1 (Continued).

<table>
<thead>
<tr>
<th>Selected studies</th>
<th>Location</th>
<th>Time period</th>
<th>Patients (n)</th>
<th>IgE-mediated (%)</th>
<th>Causal agents</th>
<th>Estimated incidence</th>
<th>Estimated incidence</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laxenaire, 1996 [99]</td>
<td>France</td>
<td>1992-1994</td>
<td>1750</td>
<td>57.8</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Kwittken, Sweinberg et al., 1995 [100]</td>
<td>USA</td>
<td>1990-1991</td>
<td>14</td>
<td>–</td>
<td>Latex</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laxenaire, Charpenteit et al., 1994 [22]</td>
<td>France</td>
<td>1991-1992</td>
<td>43</td>
<td>+</td>
<td>Colloids</td>
<td>–</td>
<td>0.219%</td>
<td>–</td>
</tr>
<tr>
<td>Pepys, Pepys et al., 1994 [101]</td>
<td>UK</td>
<td>1992</td>
<td>51</td>
<td>78</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laxenaire, 1993 [104]</td>
<td>France</td>
<td>1990-1991</td>
<td>1585</td>
<td>52</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Currie, Webb et al., 1993 [105]</td>
<td>Australia</td>
<td>1987-1991</td>
<td>57</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mitsuhata, Hasegawa et al., 1992 [27]</td>
<td>Japan</td>
<td>–</td>
<td>28</td>
<td>–</td>
<td>All cause</td>
<td>1:10,000</td>
<td>–</td>
<td>4.76</td>
</tr>
<tr>
<td>Binkley, Cheema et al., 1992 [107]</td>
<td>Canada</td>
<td>–</td>
<td>28</td>
<td>61</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mosicki, Sockin et al., 1990 [50]</td>
<td>USA</td>
<td>1980-1988</td>
<td>27</td>
<td>48</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Assem, 1990 [108]</td>
<td>UK</td>
<td>1972-1990</td>
<td>105</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Watkins, 1985 [110]</td>
<td>UK</td>
<td>1986-1984</td>
<td>106</td>
<td>–</td>
<td>All cause</td>
<td>1:5,000–1:10,000</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Galletly and Ireuren, 1985 [111]</td>
<td>New Zealand</td>
<td>1978-1985</td>
<td>61</td>
<td>84</td>
<td>All cause</td>
<td>1:1,250</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Leynadier, Luce et al., 1984 [112]</td>
<td>France</td>
<td>–</td>
<td>55</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laxenaire, Moneret-Vautrin et al., 1982 [115]</td>
<td>France</td>
<td>1975-1981</td>
<td>100</td>
<td>42</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Clarke, Dundee et al., 1975 [118]</td>
<td>UK</td>
<td>1965-1974</td>
<td>100</td>
<td>–</td>
<td>All cause</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
underreported, the incidence of allergic reactions being estimated at 100.6 (76.2–125.3) per million procedures [14]. The proportion of test positive and presumed IgE-mediated allergic reactions seems to be relatively similar between countries, ranging from 50 to 60% (table I).

However, substantial geographical variability regarding the different drugs or substances involved is reported. There are a large number of variables that can have an impact on the most common causes of intraoperative anaphylaxis from country to country. These variables include the ability to identify intraoperative anaphylaxis and initiate referral, the severity of the reactions that are included (or not included in the study), the type of neuromuscular blockers that are used by region, the comprehensiveness of the evaluation (i.e. inclusion of chlorhexidine, all meds given, etc.), possible sensitizing substances in a region and availability of in vitro testing to medications used and/or variance in the concentrations used for skin prick and intradermal testing.

Allergic reactions involving antibiotics or dyes are reported with a high and sometimes increasing frequency in most series, whereas the epidemic of allergic reactions to latex seems now largely under control [12]. On the contrary, reactions involving neuromuscular blocking agents (NMBAs) remain a major cause in several countries [15–21] but are less frequently reported in the United States or Denmark [22,23]. Reactions involving chlorhexidine seem to be frequent in Denmark [24] and UK [25], but are relatively uncommon in France [15]. Finally, reactions involving local anaesthetics appear very uncommon in series from all countries [12].

Mortality

Although these reactions occur in a monitored setting, an unfavourable outcome may occur even when they are rapidly recognized and appropriately treated [26]. A perioperative mortality rate ranging from 4 to 4.76% has been recorded for all causative drugs in the United States and Japan, respectively [27,28]. This is in sharp contrast with the low rate of 0 to 1.4% recently reported for Western Australia (2000–2009) [29]. Mortality due to reactions involving NMBAs has been estimated at 9% in the United Kingdom [30], and 4.1% in France [26].

Causal agents

Neuromuscular blocking agents

Non-specific direct histamine release was long thought to account for anaphylactic reactions to neuromuscular blocking agents, given their simple molecular structure [31]. The possibility of an allergic reaction to succinylcholine was first demonstrated in 1967 using a Prausnitz–Küßner test [32], whereas the existence of specific IgE recognizing substituted ammonium ions was demonstrated by Baldo and Fisher using a radio-immunological technique based on a sepharose-alcuronium complex [9].

In most reports, a large proportion of reactions are skin test or IgE positive, suggesting an IgE-mediated mechanism. Nevertheless, direct nonspecific mast cell and basophil activation leading to histamine release has been reported with the use of d-tubocurarine, atracurium and mivacurium [33,34]. Significant differences are observed concerning the frequency of IgE-mediated reactions between countries. The incidence of IgE-mediated reactions has been estimated at 184.0/million (139.3–229.7) anaesthetics, reaching 250.9/million (189.8–312.9) for women in France [1]. Reactions have also been reported with a high frequency in Australia and New Zealand, the United Kingdom, Norway, Belgium and Spain (table I). They seem to be less frequent in Sweden [35], Denmark [23], and the United States [22,36,37].

Structure-activity studies have established that the IgE recognition site of NMBAs involved the substituted ammonium ions and its molecular environment [9,38,39]. This explains the frequent cross-reactivity between the different NMBAs observed in 60 to 70% of patients allergic to NMBAs observed in skin testing, as well as its variability between patients [40]. Cross-reactivity to all NMBAs is unusual, but seems to be more frequent with aminosteroid NMBAs than with benzylisoquinoline-derived NMBAs [41].

Differences have been reported regarding the relative risk of allergic reactions with the various NMBAs available [42]. Several studies report succinylcholine and rocuronium at higher risk of anaphylaxis, whereas pancuronium and cis-atracurium are reported to be the NMBAs associated with the lowest incidence of anaphylaxis [17,20,43–45].

Allergic reactions to NMBAs may occur at first exposure suggesting that there must be environmental factors that play a role in cross-sensitizing patients against NMBAs. A possible sensitisation resulting from exposure to compounds containing tertiary and/or quaternary ammonium groups such as cosmetics or disinfectants has been hypothesized. This hypothesis is supported by a recent study conducted in hairdressers demonstrating a significant increase in IgE-sensitization to NMBAs and quaternary ammonium ion compounds [46], although the clinical significance of this increase remains to be demonstrated. Another attractive hypothesis arises from the work published by Florvaag et al. who provided repeated evidence for a connection between the consumption of pholcodine (PHO), an opioid antitussive and IgE-mediated anaphylactic reactions to neuromuscular blocking agents [47]. Their observations have led to the withdrawal of pholcodine from the Norwegian market which resulted in a decrease in IgEs to quaternary ammonium ions in the population and in the number of reports of allergic reactions to NMBAs [48]. A prospective 3 years-case control study (the ALPHO study) designed to confirm this possible link between pholcodine exposure and sensitization to NMBAs in France has been initiated in 2014.
Hypnotics
Reactions were quite frequent with barbiturates mainly because of their ability to elicit direct leukocyte histamine release, but true IgE-mediated anaphylactic reactions confirmed by skin tests and specific IgE assay have also been described [49,50]. Reactions are now rarely seen as a result of their decreased use [15]. Reactions were also quite frequent with hypnotics using Cremophor EL as solubilizer [51]. The use of propofol formulated in 10% soybean oil emulsion significantly reduced the rate of hypersensitivity reactions [1,15,52]. It has been suggested that propofol should be omitted in patients with allergy to eggs or soy, because of the presence of lecithins in the propofol vehicle, but this has not been confirmed in daily practice [53,54] and is not recommended in current guidelines [55].

Reactions to midazolam, etomidate or ketamine appear to be really rare [15,40], and there are no documented cases of inhalational agents causing anaphylaxis.

Opioids
IgE-mediated anaphylaxis to opioids is rare, accounting for only 1.6% of the reactions in the last large published survey in France [15]. Most immediate hypersensitivity reactions to morphine, codeine phosphate, or pethidine result from direct nonspecific skin mast cell activation. There is no evidence of cross-reactivity between the different opioid subclasses phenanthrenes (e.g., morphine, codeine), phenylpiperidines (alfentanil, fentanyl, remifentanil, sufentanil, and meperidine) and diphenylethanes (methadone and propoxyphene) [56], but cross-reactivity between morphine and codeine is frequent [12,55,57].

Local anaesthetics
IgE-mediated immediate hypersensitivity reactions to local anaesthetics are extremely rare in view of their use [6,52,15,58]. Reactions to benzoic acid esters are thought to be secondary to their metabolism via plasma esterases to para-aminobenzoic acid, thus intra-class cross-reactivity may occur. The amide local anaesthetics (lidocaine bupivacaine, mepivacaine, ropivacaine) are usually used during anaesthesia, which are considered less sensitizing.

In most cases, suspected hypersensitivity reactions result from non-allergic causes including vasovagal syncope, relative overdosage due to accidental intravascular administration, symptoms from vasopressor or toxic levels due to slow metabolism and intolerance.

In case of positive skin testing to local anaesthetics, possible reactions induced by the presence of methylparaben, paraben, or metabisulfite used as preservatives must also be considered [12,55].

Antibiotics
Antibiotics represent an increasing cause of allergic reactions in the perioperative period. They account for between 40 to 50% of the reactions reported in the United States or Spain [21,22,37]. A rapid increase from 2% in the late eighties to around 20% of the reactions now is also reported in France where antibiotics represent the second most common cause of IgE-mediated reactions (unpublished data) [59]. Penicillins and cephalosporins account for the majority of antibiotics related anaphylactic reactions during anaesthesia, and the specific drugs incriminated depend on local preferences in different countries [60]. Vancomycin and quinolones have also been incriminated in some cases, but the allergic nature of these reactions is difficult to establish in view of their direct histamine releasing properties and the limitation of skin tests with these drugs.

Latex
Latex was previously one of the leading causes of anaphylaxis during anaesthesia. In the 1980s, the HIV epidemic, led to a sudden high demand for natural rubber latex products. This resulted in the release of higher protein containing latex products on the market and was associated with a sharp increase in the number of allergic reactions to latex. Several at-risk groups including children undergoing numerous procedures, particularly those with spina bifida, adults requiring multiple procedures and health care workers have been identified [55]. Many efforts have been made in the last ten years to reduce both latex exposure and sensitization by decreasing the protein content and stopping the use of powdered gloves. This has resulted in a marked decrease of the number of reactions to latex in several countries and now latex is now only the fourth cause of reaction in the last survey conducted in France (unpublished data) [61,62].

Non-steroidal anti-inflammatory agents
Non-steroidal anti-inflammatory agents (NSAIDS) are increasingly used in post-surgical and post-procedural settings. Most reactions are non-IgE mediated resulting from Cox 1 inhibition [55]. IgE-mediated anaphylaxis, although less frequent, may occur. In this situation, the patient only reacts to one NSAID.

Chlorhexidine
Chlorhexidine is a skin antiseptic and disinfectant widely used in medical, procedural and surgical settings. The allergic risk associated with its use in the perioperative period has long been recognized [24,63–66]. Anaphylaxis has been reported via topical skin application, ophthalmic wash solution, chlorhexidine bath, coated central venous catheter and urethral gels [12]. Sensitization to chlorhexidine can occur from home products such as mouthwash, toothpaste, dressings, ointments and over the counter disinfectant solutions [67]. Significant geographical differences are reported concerning the incidence of chlorhexidine-induced anaphylaxis. Reactions are quite frequent in UK [62] or Denmark [24] but relatively rare in France [46] perhaps because of its limited use in the operating room.
Dyes

Due to their extensive use in sentinel lymph node mapping in cancer surgery, triarylmethane dyes, patent blue V and isosulfan blue, are now considered important allergens in the operating room. The mechanism of these reactions remains unclear; both direct mast cell and/or basophil activation and specific IgE sensitization have been implicated. Methylene blue, a smaller molecule, which differs structurally from the triarylmethane dyes, has been proposed as an alternative for lymph node mapping [68], but has also been associated with reactions [69,70]. Since surgeons will continue to use it for lymph node mapping, anaesthesiologists must be aware of this relatively frequent rate of reactions, which usually occur after a 30 to 50 minutes’ delay following injection [71].

Colloids

Anaphylaxis to colloids may be difficult to diagnose since they are usually administered in hypotensive patients. The incidence has been estimated to range from 0.033% to 0.22% [72]. Gelatins and dextrans are more commonly associated with reactions than albumin and hetastarch [12].

Aprotinin

Aprotinin, a serine protease inhibitor with antifibrinolytic activity, was used intravenously or in haemostatic sealants to reduce bleeding during heart, orthopaedic and liver surgery. It was temporarily withdrawn worldwide in 2007 after studies suggested that its use increased the risk of complications or death, but regulators recommended recently that the suspension be lifted [73]. Aprotinin has long been one of the major causes of allergic reactions in cardiovascular surgery [74]. Prevalence of reactions is higher in patients with a history of previous exposure, and therefore, a re-exposure interval less than six months is considered a relative contraindication [75].

Sugammadex

Sugammadex is a synthetic γ-dextrin derivative designed to selectively bind to steroidal neuromuscular blocking agents. Multiple case reports of anaphylaxis to sugammadex have been recently reported [76-78]. Although the mechanism of the reaction is not clearly identified, elevated serum tryptase, positive skin testing and flow cytometry results have been provided to suggest an IgE-mediated mechanism in several cases [79,80].

Several reports have suggested that treatment of rocuronium-induced anaphylaxis should include the administration of sugammadex. Central to this proposal is whether or not encapsulation of rocuronium by sugammadex may prevent further mediator release from mast cells and basophils [81]. Some investigators performed laboratory experiments to answer these questions. CD63 expression, a marker of basophil activation, could not be blocked when sugammadex was added after basophils had already been activated by rocuronium [82]. Studies using a cutaneous model similarly concluded that sugammadex is unlikely to significantly modify the clinical course of an established allergic reaction [83].

In contrast to this evidence from laboratory settings, a review that summarized 11 cases from seven different countries demonstrated recovery from anaphylaxis after sugammadex administration [84]. There are several hypotheses to explain the discrepancy between evidences from clinical and laboratory settings, including that administration of sugammadex and alleviation of symptoms may have coincided with the beneficial effects of the already-instigated therapy with adrenaline injection and fluid resuscitation. A recent report that retrospectively analysed 13 cases of presumed rocuronium-induced anaphylaxis concluded that sugammadex does not modify the clinical course of a suspected hypersensitivity reaction [85]. Moreover, they cautioned against including sugammadex in anaphylaxis-treatment algorithms. Further studies are needed to settle this discussion.

Conclusion

An increasing risk of reactions to antibiotics, a decreasing risk of reactions to latex and continued demonstration of frequent reactions to NMBA in some, but not all countries, highlight the fact that there are geographical differences and changes over time in the epidemiology of perioperative allergic reactions. New or previously undiscovered allergens such as blue dyes, sugammadex and disinfectants emerge and reactions to these agents must be monitored. These changes and differences are a strong incentive for repeated epidemiological surveys in different countries.

Disclosure of interest: Paul Michel Mertes is involved in the ALPHO study (N° IDCRB Alpho: 2012-A01735-38) which assesses the link between pholcodine exposure and NMBA allergy. This study is sponsorized by an industrial consortium (Zambon, Urgo, Boots, Pierre Fabre, Hepatoum, Biocodex, Sanofi, Bouchara-Recordati, Gsk, Apl, Bells Healthcare, Pinewood, Thornton & Ross Ltd, Ernest Jackson).

References

Epidemiology of perioperative anaphylaxis

[88] Laxenaire MC. Epidemiology of anesthetic anaphylactoid reactions. Fourth multicenter

