Interobserver and within-subject variances of T_2-relaxation time and 1H-metabolite ratios in the normal hippocampus

Variabilités inter et intraobservateur du temps de relaxation T2 et des ratios de métabolites dans l’hippocampe normal

S. Højrupa, F.T. Jensena, S. Hoklanda, c, C. Simonsena, T. Christensena, J. Frøkiaerb, M. Pedersena,*

a MR Research Center, Aarhus University Hospital, 8200 Aarhus, Denmark
b Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
c Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark

KEYWORDS
Epilepsy; Hippocampal sclerosis; Magnetic resonance imaging; Volumetry; T2-relaxometry; Spectroscopy

Abstract
Purpose. — To investigate the magnetic resonance (MR) reproducibility of normal hippocampal volume (HV), temporal lobe volume (TLV), transversal relaxation time (T_2) and 1H-MR spectroscopy (1H-MRS) metabolite ratios.

Materials and methods. — Two sets of HV, TLV, T_2 and MR spectroscopic metabolite signal ratios were determined in 27 healthy volunteers. HV and TLV were measured with a T_1-weighted MR sequence; whereas T_2 measurements were performed with conventional spin-echo (CSE) and fast spin-echo (FSE) MR imaging sequences. The interobserver and within-subject variances of T_2 measurements were estimated.

Results. — Estimated right and left HV coefficients of variation (CV) = 0.13. FSE T_2 measurements showed no significant differences in the interobserver (CV = 0.02) and within-subject variances (CV = 0.02). Measurements showed no differences in the interobserver (CV = 0.02) and within-subject (CV = 0.04) variances for the CSE T_2 of the right and left hippocampi. Metabolite ratios between N-acetyl aspartate (NAA) and creatine (Cr), choline (Cho) and creatine, and NAA and choline plus creatine (Cho + Cr) for the right hippocampus were 2.29 ± 0.19, 1.52 ± 0.14 and 0.91 ± 0.05, respectively. Metabolite ratios for the left hippocampus were 2.18 ± 0.10, 1.48 ± 0.10 and 0.88 ± 0.06, respectively.

* Corresponding author.
E-mail address: michael@mr.au.dk (M. Pedersen).

0150-9861/$ - see front matter © 2007 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.neurad.2007.05.001
Introduction

Hippocampal sclerosis (HS) in the form of hippocampal atrophy and hippocampal gliosis is found in approximately two-thirds of patients with temporal lobe epilepsy [16]. Epileptic seizures can be associated with foci in all four cerebral lobes; however, surgical resection of the hippocampus and the anterior temporal lobe has cured about 90% of patients suffering from partial seizures of temporal-lobe origin [2]. A successful surgical outcome requires, nevertheless, a precise preoperative diagnosis.

Different imaging techniques are used for diagnosis and treatment guidance of temporal-lobe epilepsy. Magnetic resonance imaging (MRI) and 1H magnetic resonance spectroscopy (1H MRS) are useful in the evaluation of lateral and localized epileptogenic foci, and in the determination of their spatial distribution [3,23,27]. Relaxometric measurements are occasionally applied as a sign of hippocampal gliosis and is accompanied by an increased transversal relaxation time (T_2) [11] and decreased longitudinal relaxation time (T_1) [11] and an increased apparent diffusion coefficient [6]. Townsend et al. [26] have, for example, demonstrated an increase in the temporal-lobe white-matter T_2 in 78% of patients with hippocampal atrophy. In addition, hippocampal atrophy can be detected by visual inspection of hippocampal volume (HV). However, Reutens et al. [23] have shown that this approach is useful only in situations where the ipsilateral HV is reduced by more than 30% of the contralateral HV. Furthermore, T_2 relaxometry has proven capable of detecting bilateral hippocampal abnormalities, hippocampal gliosis and epileptic activity, and also has the advantage of being a relatively accurate measurement technique.

In some cases, measurements of T_2 have been able to detect hippocampal gliosis and epileptic activity, even when the HV data were apparently normal [11]. T_2 relaxometry is able to detect bilateral hippocampal abnormalities in patients with unilateral or no hippocampal atrophy, and can correctly pinpoint the site in most patients [1].

Unfortunately, radiological inspection occasionally misses minor lesions and bilateral atrophies [3,5]. In fact, it has been shown that measurements of HV are inadequate for revealing bilateral abnormalities with minor hippocampal atrophy [12,23] and, interestingly, Sørensen et al. [25] have noted that diagnostic expertise does not increase the reproducibility of HV when inspected visually.

1H MRS is frequently employed to supplement volumetric and relaxometric measurements [3,18], as the metabolite ratios of NAA to (Cho + Cr), NAA to Cr, and Cho to Cr are predictors of epilepsy and sclerosis. 1H MRS is, however, influenced by various factors that restrict the ability to reproduce acquired metabolic spectra; of particular concern is the relatively low signal-to-noise ratio (SNR) observed using clinically available MRS systems. Furthermore, factors such as magnetic-field non-homogeneity, changes in positioning and changes in pulse-sequence parameters critically reduce the possibility of reproducing 1H MRS spectra.

Conclusions. — HV, TLV, T_2 and 1H MRS metabolite ratio measurements showed fair reproducibility with small CVs, and no differences in the interobserver and within-subject variances, including no differences between right and left TLV, and in the right and left T_2.

© 2007 Elsevier Masson SAS. All rights reserved.
The aim of this study was to investigate the interobserver and within-subject variances in measurements of HV, temporal lobe volume (TLV), T2 and metabolite ratios in healthy adult brains that may potentially serve as references in the clinical evaluation of hippocampal disorders.

Materials and methods

The study included 27 healthy volunteers, aged between 24 and 58 years (36.9 ± 9.2 years), of whom 21 were men and 6 were women. Measurements of HV, TLV and T2 were performed on a 1.5 T Philips Gyroscan MR system (Philips Medical Systems, Best, Netherlands). One operator performed two sequential measurements of HV, TLV and T2 of the right and left hippocampi in each subject. Following the first set of measurements, the subject was repositioned and the procedure repeated. HV and TLV were measured with manual segmentation on images acquired with a coronal T1-weighted fluid-attenuated inversion recovery (FLAIR) sequence using the following parameters: TE/TR/TI = 9.6 ms/1500 ms/700 ms, matrix = 256 × 256, number of transients (NT) = 2, slice thickness = 4 mm, FOV = 22 × 22 cm². T2 was measured with a coronal fast spin-echo (FSE) sequence using TE/TRSE/TRIR/TI = shortest and 100 ms/1000 ms/2260 ms/500 ms, matrix = 128 × 128, NT = 1, FOV = 20 × 20 cm², slice thickness = 5 mm. T2 was also measured with a conventional spin-echo (CSE) sequence using TE = 35, 70, 105, 140 ms, TR = 2400 ms, matrix = 128 × 128, FOV = 22 × 16 cm², slice thickness = 5 mm. HV, TLV and T2 were measured twice; each time, the volunteer was removed and repositioned.

1H MRS was conducted on a 1.5 T GE Signa EchoSpeed system (General Electric, Milwaukee, WI), as our Philips system has no spectroscopic module. Experiments were performed using both a single-volume point-resolved spectroscopy (PRESS) sequence with TR/TE = 2000 ms/270 ms, and a stimulated-echo acquisition-mode (STEAM) sequence with TR/TE = 2000 ms/25 ms both employed with water suppression. Other parameters were FOV = 24 × 24 cm², slice thickness = 20 mm, and NT = 256. Both right and left hippocampi were measured with PRESS, whereas measurements with STEAM were applied to the left hippocampus only (Fig. 1). The area and height of the metabolic peaks were processed using the SAGE technique (Horison EchoSpeed; GE Medical Systems, Milwaukee, WI). Only spectra that satisfied the following criteria were included in the analysis: 1) the lowest point between the Cho peak and the Cr peak was less than the half width of the smaller of the two; and 2) SNR > 8 for the Cr peak. The ratios of NAA to (Cr + Cho), NAA to Cr, and Cho to Cr were calculated, and the volume of interest was positioned in the center of the hippocampus (2 × 2 × 2 cm³) (Fig. 2).

Each subject gave his/her informed consent. The study was approved by the local institutional review board.

Figure 1 1H MRS of the hippocampus in a healthy subject using the PRESS (A) (TR/TE = 2000 ms/270 ms) and the STEAM (B) (TR/TE = 2000 ms/25 ms) sequences.
Figure 2 Volumes d'intérêt des hippocampes droit (1) et gauche (2) utilisés pour la spectroscopie RM en sequence PRESS.
Statistics

Means and standard deviations (S.D.) were calculated for all parameters. HV and TLV were measured by two experienced observers, and the HV and TLV interobserver and within-subject variances calculated. Repeated measurements of HV, TLV and T2 were analyzed by the same observer to evaluate the within-subject variance. Statistical comparison was performed using a t-test (equality of mean), Fisher’s F-test (equality of variance) and a χ²-test (normality). A significance level of 95% was used.

Results

Two sets of volumetric measurements of HV and TLV were successfully performed in 25 participants. The right and left HVs for each volunteer were $4.3 \pm 0.6 \text{ cm}^2$ (within-subject variance of 0.5 cm²), interobserver variance of 0.2 cm²) and HV of $4.1 \pm 0.5 \text{ cm}^2$ (within-subject variance of 0.5 cm²), interobserver variance of 0.2 cm²), respectively (Fig. 3). TLVs were $73.4 \pm 8.3 \text{ cm}^2$ and $71.2 \pm 7.4 \text{ cm}^2$ for the right and left hemispheres, respectively. Statistical evaluation revealed a significant difference between right and left HVs ($P < 0.0001$) and between right and left TLVs ($P < 0.01$), with coefficients of variance (CV) for the right and left HVs of 0.13. The reproduced measurements of right and left HVs, and right and left TLVs, demonstrated normality based on a χ²-test, equal mean values according to a t-test and a comparable variance according to Fisher’s F-test.

Table 1 shows the results of T2 measurements, based on the FSE sequence, demonstrating no significant difference in the interobserver and within-subject variances. However, the interobserver variance showed a small, but statistically significant, difference in T2 measurements on the left side. No significant difference between T2 of the right and left hippocampi was observed. The mean T2 of the right hippocampus using FSE was $104.8 \pm 4.5 \text{ ms (CV = 0.04, within-subject variance of 2.3 ms)}$, and $103.8 \pm 4.5 \text{ ms (CV = 0.04, within-subject variance of 2.4 ms)}$ for the left hippocampus.

Table 2 shows T2 measured by the CSE sequence demonstrating no significant difference in the interobserver and within-subject variances, except for a significant difference in the first within-subject variance measurement of the left T2 ($P = 0.047$). Similarly, CSE measurements of T2 demonstrated no significant difference between the right and left hippocampi. The mean T2 for the right hippocampus was $98.8 \pm 5.3 \text{ ms (interobserver variance of 2.3 ms)}$ and $98.4 \pm 5.9 \text{ ms for the left hippocampus (interobserver variance of 3.3 ms)}$. For the right hippocampus, CSE T2 produced a CV of 0.04 and, for the left hippocampus, CSE T2 produced a CV of 0.02, indicating fair repeatability of T2.

'H MRS metabolite ratios were successfully measured in 19 left and 21 right hippocampi (70% and 77%, respectively). The 'H MRS metabolite ratios measured with the PRESS sequence calculated by peak height estimation showed no difference between the right and left hippocampi (Table 3). Metabolite ratios of the right hippocampus were 0.91 ± 0.05, 2.29 ± 0.19 and 1.52 ± 0.14 for NAA to (Cr

Table 1 Measurements of normal T2 with a FSE

<table>
<thead>
<tr>
<th>FSE T2 (ms) (N = 26)</th>
<th>Observer 1</th>
<th>Observer 2</th>
<th>Within subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interobserver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± S.D.</td>
<td>104.8 ± 1.9</td>
<td>104.8 ± 2.2</td>
<td>104.6 ± 1.7</td>
</tr>
<tr>
<td>CV</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>P</td>
<td>0.321</td>
<td>0.676</td>
<td>0.378</td>
</tr>
<tr>
<td>Left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± S.D.</td>
<td>104.2 ± 2.1</td>
<td>103.5 ± 2.5</td>
<td>103.8 ± 1.3</td>
</tr>
<tr>
<td>CV</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>P</td>
<td>0.003</td>
<td>0.007</td>
<td>0.686</td>
</tr>
</tbody>
</table>

CV: coefficient of variation; P: probability coefficient.
Table 2 Measurements of normal T2 with a CSE
Tableau 2 Mesures du T2 normal en T2 spin-écho conventionnel (CSE)

<table>
<thead>
<tr>
<th></th>
<th>Interobserver</th>
<th>Within subject</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observer 1</td>
<td>Observer 2</td>
</tr>
<tr>
<td></td>
<td>Measurement 1</td>
<td>Measurement 2</td>
</tr>
<tr>
<td>Right CSE T2 (ms) (N = 26)</td>
<td>98.1 ± 3.7</td>
<td>98.8 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>99.5 ± 1.9</td>
<td>98.2 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.894</td>
<td>0.815</td>
</tr>
<tr>
<td></td>
<td>0.068</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.188</td>
<td>0.333</td>
</tr>
<tr>
<td></td>
<td>0.047</td>
<td>0.532</td>
</tr>
</tbody>
</table>

CV: coefficient of variation; P: probability coefficient.

Table 3 Mean values of area and height of metabolite ratios in the right and left hippocampi. Differences between right and left side were not significant (P > 0.05)
Tableau 3 Valeurs moyennes de la surface et de la hauteur des ratios de métabolites dans les hippocampes droit et gauche. Les différences entre les côtés droit et gauche n'étaient pas significatifs (P > 0.05)

<table>
<thead>
<tr>
<th></th>
<th>Press Right (N = 19)</th>
<th>Left (N = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area</td>
<td>Area</td>
</tr>
<tr>
<td>Parameter</td>
<td>Mean ± SD</td>
<td>CV%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA/(Cr + Cho)</td>
<td>0.94 ± 6.5</td>
<td>0.91 ± 6.8</td>
</tr>
<tr>
<td>NAA/CT</td>
<td>2.39 ± 10.0</td>
<td>2.27 ± 12.9</td>
</tr>
<tr>
<td>Cho/CT</td>
<td>1.56 ± 12.1</td>
<td>1.55 ± 13.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press</td>
<td>Height</td>
<td>Height</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA/(Cr + Cho)</td>
<td>0.91 ± 5.3</td>
<td>0.88 ± 6.8</td>
</tr>
<tr>
<td>NAA/CT</td>
<td>2.29 ± 8.5</td>
<td>2.18 ± 8.0</td>
</tr>
<tr>
<td>Cho/CT</td>
<td>1.52 ± 9.4</td>
<td>1.48 ± 6.8</td>
</tr>
<tr>
<td>STEAM</td>
<td>Left (N = 20)</td>
<td>Left (N = 18)</td>
</tr>
<tr>
<td></td>
<td>Area</td>
<td>Area</td>
</tr>
<tr>
<td>Parameter</td>
<td>Mean ± SD</td>
<td>CV%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA/(Cr + Cho)</td>
<td>0.63 ± 5.7</td>
<td>0.73 ± 8.0</td>
</tr>
<tr>
<td>NAA/CT</td>
<td>1.23 ± 7.6</td>
<td>1.41 ± 8.5</td>
</tr>
<tr>
<td>Cho/CT</td>
<td>0.95 ± 8.9</td>
<td>0.93 ± 9.5</td>
</tr>
</tbody>
</table>

+ Cho), NAA to Cr, and Cho to Cr, respectively, with CV percentages of 5.3%, 8.5% and 9.4%. Metabolite ratios of the left hippocampus were 0.88 ± 0.06, 2.18 ± 0.17 and 1.48 ± 0.10, respectively, with CV percentages of 6.8%, 8.0% and 6.8%. These results agree with others published previously [4,9,10,17,24]. Metabolite ratios of the left hippocampus measured with the STEAM sequence were 0.73, 1.41, 0.93 with CV of 8.0%, 8.5% and 9.5%, respectively, indicating a relatively higher uncertainty compared with the PRESS sequence. There was, however, no difference between ratios calculated by peak areas and peak heights estimated by the PRESS and the STEAM sequences.

Discussion

The purpose of this study was to investigate values of HV, TLV, T2 and metabolite ratios in healthy persons, and also to evaluate the interobserver and within-subject variances of these parameters.

In our hospital, HV and TLV are usually measured by the same operator to ensure repeatability. Measurements of the intraobserver variance of HV and TLV were therefore, not performed in this study. The statistically significant differences measured between right and left HVs, and right and left TLVs, were in agreement with previous findings by Fernandez et al. [7] T2 measurements were performed both with a CSE and a FSE to investigate the difference in methodology. This study surprisingly demonstrated a marked difference in the T2 measurements performed by observers 1 and 2, and a small difference between subjects (P < 0.05) in the first measurement of left T2, which we could not explain. However, the observed T2 values were comparable with those reported in healthy brains [11,27]. In agreement with these results, we used the HV difference (right – left) of -0.5 cm² as a lower cut-off level and +0.8 cm² as an upper cut-off level, and differences in HV outside this interval were then identified as abnormal.

The wide variation in normal HVs suggests that diagnosis of hippocampal atrophy and bilateral abnormalities cannot be based entirely on visual assessments of HV. However, diagnostic evaluation of temporal-lobe epilepsy is significantly improved when volumetry and measurement of T2 are combined [27]. It has likewise been reported that combined measurements of HV and metabolite ratios improve the diagnostic lateralization of HS [14]. Experimental studies in animals and humans suggest that hippocampal neurons are particularly susceptible to aging, suggesting that the volumetric findings in our study should be related to age. Such analyses have not been done in this study, as...
reports of age-related hippocampal changes in MRI volume-
try have been inconsistent [19,22]. Age-related HV loss has
been reported by some authors [13,21], but not others [15].

1H MRS estimation of peak heights showed that the CVs
for the left hippocampus measured with the STEAM
sequence decreased in precision compared with the CVs
measured with the PRESS sequence, which presumably
could be explained by a lower SNR in spectra obtained
with STEAM compared with those obtained with PRESS.
It has been demonstrated that epilepsy patients present
with significant reductions in the NAA signal and in the NAA-to-
(Cr + Cho) ratio, together with an increase in the Cr and
Cho signals [8]. Reduction of NAA was interpreted as neuro-
nal loss or damage and increase of Cr and Cho as reactive
astrocytosis. It was, therefore, suggested that measure-
ments of the NAA-to-(Cr + Cho) ratio may serve as an im-
portant parameter in the evaluation of neuronal loss in the hip-
 pocampus.

Several considerations are involved in performing a
single-voxel 1H MRS study. The employed TR makes a
trade-off between SNR and acquisition time (for a fixed
number of averages), whereas a long TE minimizes
unwanted lipid and water resonances at the expense of
SNR as well as the ability to detect long T2 components
(NAA, Cr, Cho). In addition, the choice of pulse sequence
can be critical, as PRESS usually produces a twofold better
SNR (for the same TE) than STEAM, whereas STEAM is known
generate both a better volume of interest selection and
increased water suppression. In the current study, both
techniques were investigated, but with a relatively lower
TE for the STEAM sequence according to the general use in
clinical settings.

Another important criterion is related to the placement
of the volume of interest. Although neuronal anatomy dic-
tates the selected volume, several factors need to be con-
sidered. First, the quality of the collected spectra depends
critically on magnetic-field homogeneity and, therefore,
regions near air-filled sinuses, vessels or bone, or other
sources that can change the local magnetic susceptibility
can compromise the quality of the acquired data. This
goes along with the second criterion, that it should be an
experienced person handling the 1H MRS measurement.

Various methods have been used to measure peak areas,
including the sophisticated LCMModel minimization method
introduced by Provencher [20], which models the spectra
upon each of the expected components in the brain as a
base set for minimization.

This study generally showed that HV and T2 measure-
ments were at least as precise as MRS measurements having
CVs in the range of 5–14%. Based on these results, we
recommend performing T2 measurements in combination
with hippocampal volumetry. However, in patients with
bilateral abnormalities, normal HV and T2, or who are
about to undergo surgical procedures, we additionally
recommend that 1H MRS be added to the MR protocol.

In conclusion, the relatively small CVs in measurements
of HV, TLY, T2 and metabolite ratios, with T2 measurements
showing no differences between variances within subjects
and between observers, suggest that measurements of HV,
TLY, T2 and metabolite ratios are repeatable. Volumetry is
used in combination with relaxometry in clinical practice,
and 1H MRS measurements are likely to be useful in situa-
tions with bilateral abnormality or with normal-appearing
HV and T2, especially as quantitative 1H MRS can reveal
important hippocampal abnormalities. It must, however,
be noted that, although the observed data reported in this
study may serve as a reference for healthy adults (taking
the possible age-dependency into consideration), these
results may not necessarily comply with measurements
performed at other magnetic field strengths or in individu-
als with pathological disorders.

References

[1] Bernasconi A, Bernasconi N, Caramanos Z, Reutens DC, Ander-
mann F, Dubau F, Tampieri D, Pike BG, Arnold DL. T2 relaxo-
metry can lateralize mesial temporal lobe epilepsy in patients
brough FW, So EL, Lagerlund TD, Shin C, Marsh WR. Electro-
corticography and temporal lobe epilepsy: relationship to
quantitative MRI and operative outcome. Epilepsia 1995;36:
679–86.
[3] Chang KH, Kim HD, Park SW, Song IC, Yu IK, Han MH, Lee SK,
Chung CK, Park YH. Usefulness of single voxel proton MR spect-
roscopy in the evaluation of hippocampal sclerosis. Korean J
Reproducibility of in vivo metabolite quantification with pro-
ton magnetic resonance spectroscopic imaging. J Magn Reson
[5] Christensen T, Pedersen B, Jensen FT. [MR-scanning in com-
JV, Biliuak LT. Acute diffusion abnormalities in the hip-
campus of children with new-onset seizures: the development
Dohring W, Heinize HJ. Hippocampal malformation as a cause
of familial febrile convulsions and subsequent hippocampal
[8] Gadian DG, Connelly A, Duncan JS, Cross LH, Kirkham FJ,
Johnson CL, Vargha-Khadem F, Neville BG, Jackson GD. 1H
magnetic resonance spectroscopy in the investigation of intractable
[9] Geurts JJ, Barkhof F, Casteljns JA, Uitdehaag BM, Polman CH,
Pouwels PJ. Quantitative 1H-MRS of healthy human cortex,
hippocampus, and thalamus: metabolite concentrations,
quantification precision, and reproducibility. J Magn Reson
[10] Hammen T, Stadlbauer A, Tomandl B, Ganslandt O, Pauli E,
Huk W, Neundorfer B, Stefan H. Short TE single-voxel 1H-MR
spectroscopy of hippocampal structures in healthy adults at
1.5 Tesla—how reproducible are the results? NMR Biomed
Detection of hippocampal pathology in intractable partial epi-
lpsy: increased sensitivity with quantitative magnetic reso-
[12] Jackson GD, Kuzniecky RI, Cascino GD. Hippocampal sclerosis
without detectable hippocampal atrophy. Neurology 1994;44:
42–6.
Stout JC, Bonner J, Hesselink JR. Effects of age on tissues
and regions of the cerebrum and cerebellum. Neurobiol

