
There are many steps on the road from discovery of an anticancer drug to securing its final approval by the Food and Drug Administration (FDA). In *Handbook of Anticancer Pharmacokinetics and Pharmacodynamics*, leading investigators synthesize an invaluable overview of the experimental and clinical processes that lead to anticancer drugs, creating a single indispensable reference that covers all the steps from the identification of cancer-specific targets to phase III clinical trials. These expert authors provide their best guidance on a wide variety of issues, including clinical trial design, preclinical screening, and the development and validation of bioanalytic methods. They detail each step in the process, ranging from compound design and synthesis, screening techniques using in vitro models, and SAR analysis for lead optimization, to in vivo experiments, formulation, preclinical pharmacokinetics, formal toxicology, and phases I–III trials. The chapters on identifying agents to test in phase III trials and on trial design for the approval of new anticancer agents offer a unique road map for moving an agent to NDA submission.

Comprehensive and highly practical, *Handbook of Anticancer Pharmacokinetics and Pharmacodynamics* provides in one volume a detailed step-by-step guide to the successful design and approval of anticancer drugs.

Available online 06 June 2005

0753-3322/S - see front matter © 2005 Published by Elsevier SAS.
doi:10.1016/j.biopharm.2005.05.007


Chronic kidney disease is one of the world’s major public health problems, and the prevalence of kidney failure is rising steadily. Among the risk factors for a faster progression of renal disease are hypertension and proteinuria, many studies clearly demonstrating that hypertension is both a cause and consequence of chronic kidney disease. Namely, renal blood pressure regulation seems to be involved in five major pathophysiological mechanisms (all closely related to the renin–angiotensin system): Pressure-natriuresis, renal sympathetic nervous system, renal blood flow, intraglomerular pressure and tubuloglomerular feedback.

This book reviews experimental data which form the basis of our current understanding of the association between hypertension and kidney diseases: The pathogenesis of increased blood pressure, the mechanisms by which systemic hypertension promotes progressive kidney failure, and the impact of antihypertensive agents on experimental renal mechanisms involved in hypertension. Furthermore, the role of angiotensin II receptor blockers in both the control of systemic blood pressure and the reduction of proteinuria is examined in an attempt to define optimal therapeutic strategies to prevent the otherwise inexorable deterioration of renal function in patients with chronic kidney disease.

Available online 06 June 2005

0753-3322/S - see front matter © 2005 Published by Elsevier SAS.
doi:10.1016/j.biopharm.2005.05.008


Although drug–nutrient interactions can produce therapeutic failure, adverse drug reactions, and altered nutritional status, many clinicians do not recognize this potential when prescribing drugs or understand that drug–nutrient interactions can be as important as drug–drug interactions. In *Handbook of Drug–Nutrient Interactions*, well-recognized and respected authorities comprehensively review many of the more common, and some less common, drug–nutrient interactions, detailing the mechanisms and clinical approaches to their effective management. Providing more than a simple listing of common interactions, this much needed work explores, in-depth, every major aspect of the problem, including drug and nutrient disposition, enzyme systems, the effects of nutritional status on drug disposition, and the influence of food, nutrients, and non-nutrient components on drug effects and disposition. The authors present the latest findings on the influence of medications on nutrient status and on those interactions relevant to life-cycle stages and to specific patient groups. Separate chapters examine the effects of caffeine,