CASE REPORT

Simultaneous supratentorial and brainstem abscesses due to *Listeria monocytogenes*

Abscès à *Listeria monocytogenes* : atteinte simultanée supratentorielle et du tronc cérébral

J.P. Soares-Fernandes a,*, P. Beleza b, J.J. Cerqueira b, M. Ribeiro a, R. Maré b, E. Lourenço b, J.F. Rocha a

a Department of Neuroradiology, Hospital de S.-Marcos, Braga, Portugal
b Department of Neurology (PB, J-JC, RM, EL), Hospital de S.-Marcos, Braga, Portugal

Available online 29 August 2007

Abstract Multiple supratentorial abscesses caused by *Listeria monocytogenes* are rare. We report the simultaneous occurrence of multiple supratentorial and brainstem abscesses due to *Listeria*, in a patient under corticotherapy for an exacerbation of ulcerative colitis. MR imaging features before and after successful conservative treatments are depicted. In immunocompromised patients with supratentorial listerial abscesses, the coexistence of brainstem abscedation is exceptional. Despite high mortality associated with listerial abscesses, this case illustrates the possibility of a good clinical outcome, if the appropriate antibiotic regimen is instituted and the immunosuppressant agent is discontinued.

© 2007 Elsevier Masson SAS. All rights reserved.

MOTS CLÉS

*Disclosure: the authors have reported no conflicts of interest.*

*Corresponding author.
E-mail address: jsf@bragatel.pt (J.P. Soares-Fernandes).*

Available online 29 August 2007

© 2018 Elsevier Masson SAS. Tous droits réservés. - Document téléchargé le 10/12/2018 Il est interdit et illégal de diffuser ce document.

 doi:10.1016/j.neurad.2007.07.009
Introduction

Listeria monocytogenes is an intracellular Gram-positive rod that is known to cause systemic and central nervous system (CNS) infection, afflicting mainly the immunosuppressed and perinatal–neonatal populations [12].

CNS involvement by L. monocytogenes includes meningitis and other less common manifestations, such as meningoencephalitis, rhomboencephalitis, cerebritis and abscesses [2,9,14]. Brain abscesses account for approximately 10% of CNS listerial infections and are seen in 1% of all listerial infections [10].

In 2003, Cone et al. [6] reviewed published cases of brain abscesses due to L. monocytogenes. Thirty of the 40 observed were solitary ones and only four presented with more than three abscesses.

We present a case of multiple Listeria brain abscesses, describe its imaging findings and discuss the potential physiopathologic mechanism of this infection.

Case report

A 46-year-old woman presented to our emergency department with a five-day history of general malaise, fever, headaches and progressive lethargy. She took prednisolone (40 mg per day) for an exacerbation of her ulcerative colitis 6 weeks before and had recently been diagnosed to have diabetes mellitus.

On examination, the patient was feverish (40.4 °C), comatose, with conjugate eye deviation to the right. She also exhibited left hemiparesis and evident neck stiffness. Laboratory analysis showed a mild leukocytosis (13.1 × 10⁹/l) and elevated C-reactive protein (75 mg/l). A lumbar puncture revealed an opening pressure of 490 mm of water, a leukocyte count of 50 cells/mm³ (consisting of 67% neutrophils), a glucose level of 42 mg/dl (serum level of 168 mg/dl) and a protein level of 1.14 g/l.

MR imaging displayed multiple rounded lesions, with variable sizes, involving the right thalamus, basal ganglia and frontal white matter. The midbrain structures were bilaterally involved. The lesions were characterized by prolonged T2 (Fig. 1 A), restricted water diffusion (Fig. 2) and ring-like or nodular enhancement after contrast administration (Fig. 1B—D).

Cultures of blood and CSF samples yielded L. monocytogenes. An ultrasound study of the abdomen failed to reveal hepatic lesions. The patient was treated with intravenous ampicillin (8 g per day) for eight weeks and gentamicin (300 mg per day) for 4 weeks. She recovered her consciousness within five weeks and was discharged with slight bilateral restriction of ocular abduction and...
Simultaneous supratentorial and brainstem abscesses due to Listeria monocytogenes

Healthy adults, with only 8% of cases found in immunosuppressed versus 58% of those with solitary abscesses, one listerial supratentorial brain abscess are immunosuppressed. Since listerial abscesses are rare entities, alternative diagnosis of more common conditions occurring in the immunocompromised patient must be considered. Toxoplasmosis also presents with multiple lesions, involving the basal ganglia. However, normal ADC values are usually seen [5]. Pyogenic abscesses are infrequently multiple and typically show restricted diffusion [4]. Additionally, a rim of hyperintensity on T1-weighted images and low signal on long-TR sequences due to the presence of free radicals is characteristically found. In our case, basal ganglia abscesses showed restricted diffusion, without a rim of free radicals.

The combination of ampicillin (for a minimum of 4 weeks) and gentamicin (for 2–4 weeks) is the regimen of choice for the treatment of listerial brain abscess [11,13]. Trimethoprim—sulphamethoxazole may be a reasonable alternative for the treatment of patients with allergy to penicillin.

Mortality is high and not significantly different in patients with more than one abscess (44%) from those with a single abscess (40%) [6]. However, it is significantly higher than in non-listerial supratentorial brain abscess.

Finally, we excluded the concomitant presence of hepatic abscesses, which seems to predict a dismal outcome. In Braun’s review of liver abscesses due to L. monocytogenes [3], all the patients with multiple liver abscesses expired, while those with solitary ones survived.

Despite high mortality associated with listerial abscesses, this case illustrates the possibility of a good clinical outcome, if the appropriate antibiotic regimen is instituted and the immunosuppressant agent is discontinued.

Discussion

L. monocytogenes is believed to reach the CNS by haematogenous spread from the gastrointestinal tract. Ingestion of Listeria-contaminated food is considered to be the source of virtually all human infections [6]. Once ingested, it penetrates into Peyer’s patches of the small intestine gaining access to the mesenteric lymph nodes and then to the blood. In our patient, intestinal lesions of ulcerative colitis may have facilitated invasion. Previously, listerial disease has also been associated to perforating duodenal ulcer, caecal gangrene, Crohn’s disease, carcinoma of the rectum and shigellosis [15].

Once in the bloodstream, Listeria travels mainly in non-listericidal macrophages spreading from cell to cell without contact with the extracellular space [7].

In the CNS, meningitis may follow as the organism attaches to the epithelial cells on the choroid plexuses. Cerebritis and subsequent abscess formation result from penetration in the brain parenchyma, through the cerebral capillary endothelium, via middle cerebral artery. Therefore, bacteraemia is a laboratory finding in about 86% of Listeria abscesses. Bacteraemia is an unusual laboratory finding in brain abscesses caused by other bacteria, occurring in 11% of cases [8]. As in our case, listerial brain abscess have been associated with meningitis in up to 38% of the patients [8].

On the other hand, listerial rhombencephalitis may be explained by axonal transport of food borne Listeria to the brainstem, after entering cranial nerve endings [1]. The proposition of two different mechanisms for two different lesions (supratentorial abscesses and rhombencephalitis) strengthens the presumed blood dissemination through the perforating arteries of the basal ganglia and brainstem in our patient.

The limited number of reported cases of multiple brain abscesses caused by L. monocytogenes provided few reports of MR imaging correlations. Involvement of the subcortical grey matter, such as the thalamus and the basal ganglia, are more common than in abscesses due to other agents, occurring in up to 21% [8,10]. The frontoparietal subcortical white matter is another elective location.

Seventy-five percent of patients presenting more than one listerial supratentorial brain abscess are immunosuppressed versus 58% of those with solitary abscesses, suggesting that suppressed immunity is a risk factor for listerial brain abscesses and even more so with multiple ones [6]. Differently, rhombencephalitis often occurs in otherwise healthy adults, with only 8% of cases found in immunosuppressed patients [2].

Since listerial abscesses are rare entities, alternative diagnosis of more common conditions occurring in the immunocompromised patient must be considered. Toxoplasmosis also presents with multiple lesions, involving the basal ganglia. However, normal ADC values are usually seen [5]. Pyogenic abscesses are infrequently multiple and typically show restricted diffusion [4]. Additionally, a rim of hyperintensity on T1-weighted images and low signal on long-TR sequences due to the presence of free radicals is characteristically found. In our case, basal ganglia abscesses showed restricted diffusion, without a rim of free radicals.

The combination of ampicillin (for a minimum of 4 weeks) and gentamicin (for 2–4 weeks) is the regimen of choice for the treatment of listerial brain abscess [11,13]. Trimethoprim—sulphamethoxazole may be a reasonable alternative for the treatment of patients with allergy to penicillin.

Mortality is high and not significantly different in patients with more than one abscess (44%) from those with a single abscess (40%) [6]. However, it is significantly higher than in non-listerial supratentorial brain abscess.

Finally, we excluded the concomitant presence of hepatic abscesses, which seems to predict a dismal outcome. In Braun’s review of liver abscesses due to L. monocytogenes [3], all the patients with multiple liver abscesses expired, while those with solitary ones survived.

Despite high mortality associated with listerial abscesses, this case illustrates the possibility of a good clinical outcome, if the appropriate antibiotic regimen is instituted and the immunosuppressant agent is discontinued.

References