CLINICAL RESEARCH

A randomised trial of three counselling strategies for lifestyle changes in patients with hypercholesterolemia treated with ezetimibe on top of statin therapy (TWICE)

Essai randomisé de trois stratégies de conseils de modifications du mode de vie chez des patients hypercholestérolémiques traités par ezetimibe en association à une statine (TWICE)

Philippe Gabriel Steg\(^a\),∗, Jean-Claude Verdier\(^b\), François Carré\(^c\), Bernadette Darne\(^d\), Alain Ducardonnet\(^e\), Gérard Jullien\(^e\), Michel Farnier\(^f\), Philippe Giral\(^g\), Robert Hâiat\(^h\), on behalf of the TWICE Investigators, France

\(^a\) Inserm U-698, université Paris-VII—Denis-Diderot, hôpital Bichat-Claude-Bernard, AP—HP, 46, rue Henri-Huchard 75018 Paris, France
\(^b\) Institut Cœur Effort Santé, 75013 Paris, France
\(^c\) CHU de Rennes, 35009 Rennes, France
\(^d\) Monitoring Force France, 78600 Maisons-Laffitte, France
\(^e\) Collège national des cardiologues français, 75014 Paris, France
\(^f\) Le Point Médical, 21000 Dijon, France
\(^g\) CHI Poissy-Saint-Germain, 78100 Saint-Germain en Laye, France

Received 21 September 2008; received in revised form 21 October 2008; accepted 22 October 2008
Available online 20 November 2008

KEYWORDS
Ezetimibe;
Primary hypercholesterolemia;

Summary
Aims. — To compare the impact of three patient counselling strategies for lifestyle changes and to assess the safety and efficacy of ezetimibe on top of statin therapy in hypercholesterolemic high risk patients.

∗ Corresponding author. Fax: +33 1 40 25 88 65.
E-mail address: gabriel.steg@bch.aphp.fr (P.G. Steg).

1875-2136/$ — see front matter © 2008 Elsevier Masson SAS. All rights reserved.
Methods. — Open, cluster randomized 3-parallel group trial. Physicians were randomized between patient motivation on: diet or physical exercise or both. Counselling was adapted to the patient’s baseline Prochaska stage of change. High cardiovascular risk patients, with LDL-C above or equal to 3 mmol/L despite statin therapy for at least 3 months, were enrolled. Ezetimibe (10mg/day) and patient counselling were started at the same time. Target goal was defined as total cholesterol less than 5 mmol/L and LDL-C above 3 mmol/L.

Results. — Overall 428 physicians enrolled 1496 patients. At baseline, LDL-C was 3.9 ± 0.9 mmol/L and total cholesterol was 6.1 ± 1.1 mmol/L. LDL-C decreased by $-30.4 \pm 19.3\%$ and 869 (62%) patients achieved target goal. No difference was shown between randomisation groups. However, improvements in diet consumption patterns were more easily obtained than improvement in physical activity stage of change in non-active patient at baseline.

Conclusions. — The marked short-term impact (-30%) on LDL-C, although similar between the three groups, slightly exceeds usual LDL-C reductions achieved by this dose of ezetimibe. Decreasing fat consumption seems easier than increasing physical activity. This study confirms the good efficacy, short-term tolerability and safety of ezetimibe on top of statins.

© 2008 Elsevier Masson SAS. All rights reserved.

Abbreviations

- ALT alanine aminotransferase
- AST aspartate aminotransferase
- CK creatine kinase
- GEE generalized estimating equations
- HDL-C high-density lipoprotein cholesterol
- HMG-CoA hydroxy-methyl-glutaryl-coenzyme A reductase
- LDL-C low-density lipoprotein cholesterol
- REML restricted maximum likelihood
- TG triglycerides
- TWICE ezetimibe together with any statin cholesterol enhancement
- ULN upper limit of normal

Background

Diet and physical activity are the key to the treatment of dyslipidemia and prevention of cardiovascular disease, whether used alone or in combination with drug therapy [1,2]. Therapeutic lifestyle changes confer large and usually more than additive benefits in terms of risk reduction [2,3].

Much has been learned during the past two decades about successful modification of diet and lifestyle parameters, using behavioural science [4—7]. For example, the Prochaska and DiClementi [8] “stages of change” model postulates that both cessation of high-risk behaviours and the acquisition of healthy behaviours involve progres-
Results of TWICE trial

Hypercholesterolemia

A family history of premature sudden death or myocardial infarction (other than in primary prevention with one or more cardiovascular risk factors (diabetes mellitus, sustained arterial hypertension, current smoker, man aged 45 or older, menopause or woman aged 55 or older, family history of premature sudden death or myocardial infarction) other than hypercholesterolemia [2]. A family history of premature event was defined as a sudden death or myocardial infarction in a first degree male relative man before 55 or first degree female relative before 65 [2]. Before starting intervention, it was checked that TG level was below 4.52 mmol/L (400 mg/dL), liver transaminases (ALT, AST) less or equal to 2-fold the ULN, CK less or equal to 2-fold ULN and creatinin clearance (Cockroft formula) higher than 30 ml/min.

Key exclusion criteria included:

- use of other lipid-lowering agents within the last 3 months including HMG-CoA reductase inhibitors other than the current statin, fish oils, cholestyramin, niacin (> 200 mg/day) and fibrates;
- any modification in the statin treatment within the last 6 weeks;
- any contra-indication to statin or ezetimibe treatment;
- myocardial infarction, unstable angina, coronary artery bypass surgery, or angioplasty (coronary or peripheral artery) within the last 3 months;
- any immunosuppressant including cyclosporine;
- uncontrolled hypothyroidism;
- active liver disease including known infection by HBs or HBc virus or known HIV infection.

Adding ezetimibe to ongoing statin therapy leads to substantial additional reduction in LDL cholesterol levels [13]. Ezetimibe was found to be safe and well tolerated in clinical trials. Post marketing studies allow a better assessment of drug safety in clinical practice. This post-marketing trial therefore provided an opportunity to confirm the safety and efficacy of ezetimibe treatment in co-administration with a statin in routine clinical practice.

Methods

Patients

Patients with primary hypercholesterolemia and low-density lipoprotein (LDL-C) greater or equal to 3 mmol/L (115 mg/dL) currently treated with a statin for at least 3 months and between the ages of 18 and 80 were enrolled. Patients were at high cardiovascular risk: secondary prevention (established cardiovascular organ damage or disease) or in primary prevention with one or more cardiovascular risk factors (diabetes mellitus, sustained arterial hypertension, current smoker, man aged 45 or older, menopause or woman aged 55 or older, family history of premature sudden death or myocardial infarction) other than hypercholesterolemia [2]. A family history of premature event was defined as a sudden death or myocardial infarction in a first degree male relative man before 55 or first degree female relative before 65 [2]. Before starting intervention, it was checked that TG level was below 4.52 mmol/L (400 mg/dL), liver transaminases (ALT, AST) less or equal to 2-fold the ULN, CK less or equal to 2-fold ULN and creatinin clearance (Cockroft formula) higher than 30 ml/min.

Key exclusion criteria included:

- use of other lipid-lowering agents within the last 3 months including HMG-CoA reductase inhibitors other than the current statin, fish oils, cholestyramin, niacin (> 200 mg/day) and fibrates;
- any modification in the statin treatment within the last 6 weeks;
- any contra-indication to statin or ezetimibe treatment;
- myocardial infarction, unstable angina, coronary artery bypass surgery, or angioplasty (coronary or peripheral artery) within the last 3 months;
- any immunosuppressant including cyclosporine;
- uncontrolled hypothyroidism;
- active liver disease including known infection by HBs or HBc virus or known HIV infection.

Study design

This is an open, cluster-randomised, 3-parallel group trial comparing three counselling strategies on lifestyle changes.

Cluster randomisation was used, i.e. the physician was chosen as the unit of randomisation, in an attempt to limit treatment contamination. Physicians were randomised in a 1:1:1 ratio before systematic screening and recruitment between [14,15]:

- motivation on diet (Group 1);
- motivation on physical activity (Group 2);
- both (Group 3).

The trial was approved by the ethic committee and all subjects gave written informed consent before participating. The ClinicalTrials.gov identifier of the trial is NCT00328523.

Intervention

Evaluation of patient stage of change

In all patients, Prochaska stage of change and physical activity were estimated before the start of intervention and at the end of intervention, using a self-administered questionnaire. French translation of validated questionnaires were used. The five stages of change were defined for dietary fat reduction and for a Mediterranean nutrition pattern, with respect to two aspects of a Mediterranean diet: consumption of fish and vegetables. These stages of change reflect participants’ readiness to reduce their dietary fat intake and to adopt a Mediterranean diet [6,7]. The five stages of change were defined for physical exercise using four questions [11,12].

Patient counselling

Patients received a leaflet corresponding to their Prochaska stage of change. The leaflet summarizes counselling given to the patient according to the randomisation group of the physician (counselling based on diet, physical activity or both). The patient leaflets for the various types of Prochaska stage and type of counselling (diet, or physical activity or both) are available online at www.cncardio.org/news00010d08.asp.

Counselling was based on the Second Joint Task Force of European and other Societies on Coronary Prevention [16]. A Mediterranean diet was recommended in this trial as well as the recommendation to reduce fat intake, in order to have a low cholesterol diet. Patients were instructed to eat two or more servings of fruit per day, vegetables once per day at least and to replace red meat by fish twice per week [7,17,18]. Patients were also instructed to reduce butter, cream and cheese consumption [2]. As far as physical activity was concerned, patients were professionally encouraged and supported to increase their physical activity safely to a level associated with the lowest risk of cardiovascular disease. Aerobic exercise (e.g. walking, swimming or bicycling) for 20 min. three times a week was recommended. Physicians emphasized the importance of physical activity in giving the patient a sense of well-being. For the elderly
or poorly conditioned or, people in the pre-contemplation, contemplation or preparation stages of change, any amount of physical activity was recommended such as strolling or gardening with emphasis on the possible benefit.

Physicians were not prevented from giving any other oral counselling on lifestyle changes that they thought might be useful for the patient.

Ezetimibe therapy

Ezetimibe therapy was not part of randomisation and all patients received ezetimibe in addition to the statin they already received. The statin dose was kept unchanged.

Flow of the study

Fig. 1 summarizes the study design. At the end of a run-in period of 1—2 weeks and after counselling have been given, all patients were instructed to take ezetimibe 10 mg once daily in the evening on top of the dose of statin they already received.

Lipid and safety parameters were assessed after 6 to 10 weeks of ezetimibe treatment, in a core laboratory [19]. At the third and last visit in the trial, performed one week after blood sampling, all patients were asked to complete the same self-administered questionnaire in order to estimate physical activity and the stages of change for physical exercise, dietary fat reduction and Mediterranean diet. Information on events and compliance with drug treatment were also recorded.

Statistical analysis

The primary efficacy criterion was the percentage of patients with total plasma cholesterol (TC) less than 5 mmol/L (190 mg/dL) and LDL-C above 3 mmol/L (115 mg/dL) at the end of the trial, 6 to 10 weeks after the start of intervention [1]. The secondary efficacy criteria were:

- the percentage changes in LDL-C, HDL-C and TG from randomization to endpoint after 6—10 weeks of ezetimibe treatment;
- the percentage of patients with LDL-C less than 2.58 mmol/L (100 mg/dL) at the end of the trial;
- the percentage of patients with estimation of stage of change;
- the percentage of patients in a pre-action stage of change (precontemplation or contemplation or preparation stage of change) at baseline having moved to an action stage of change at end of trial.

Safety and tolerability of treatment were secondary criteria.

It was estimated that at most 70% of the patients would achieve target lipid level and that each physician would include three patients [20]. In a conventional randomised trial, without cluster design, 996 patients in every treatment group enabled detection of a difference between two treatment groups of 6% at least, with 80% power, at the 5% significance level [21]. For a cluster-randomised trial, using an intraclass correlation factor of 0.019, the standard sample estimates had to be inflated by a factor of 1.038 [14,22,23]. Therefore, a total of 3102 patients had to be enrolled by 1034 physicians.

The unit of analysis is the patient [14]. Categorical parameters were compared between the three therapeutic strategies using a chi-square adjusted for intracluster correlation, followed by logistic GEE using a model including terms for treatment, baseline LDL-C, age, gender, baseline stage of change and statistically significant interaction terms [14,24]. Percentage change data were expressed as mean or median percentage change (95% CI). Percentage change of LDL-C and other lipid parameters were compared between the three therapeutic strategies using a mixed model REML, with intervention arm and covariates as fixed effects and cluster as random effect [25,26]. Adjustment was done on baseline LDL-C, age, gender, and baseline stage of change. Interaction terms were tested. Intracluster correlation coefficients were estimated from the data. Percentage of patients in a pre-action stage at baseline having improved their stage of change by at least one level at the end of the trial was compared between randomisation groups. However, in order to avoid problems related to multiplicity only evolution of Prochaska stages of change for fat consumption and physical activity were statistically compared and descriptive statistics were used for other Prochaska stages of change: fish and vegetable consumptions. Statistical analysis was based on Intent to Treat, including all patients having received one dose of ezetimibe at least and with one determination of LDL-C before and after start of ezetimibe. All patients having received one dose of ezetimibe at least were included in the safety analysis.

Statistical analysis was conducted using SAS® software Version 8.2 (SAS Institute, Inc., Cary, NC).

Results

Out of 1059 randomised physicians (978 cardiologists and 81 general practitioners [GP]) 506 physicians (438 cardiologists and 68 GP) selected 2232 patients between June 2004 and December 2005. Enrollment, being much lower than anticipated, was stopped after 2232 patients were enrolled by 428 physicians. Of the 2232 patients, 1496 (67%) had received at least one dose of ezetimibe; 1411 (94%) patients were included in the efficacy analysis: 493 patients in Group 1, 490 patients in Group 2 and 428 patients in Group 3.

Patient characteristics

Baseline demographics, medical history and lipid levels were similar between treatment groups (Table 1). Approximately one-third of the patients had a known history of myocardial infarction, and approximately half were treated for hypertension. At baseline, LDL-C was 3.9 ± 0.9 mmol/L (151 ± 35 mg/dL) and total cholesterol was 6.1 ± 1.1 mmol/L (234 ± 39 mg/dL).

Among statins used at baseline, pravastatin was the most commonly used (n=475 [34%]), followed by atorvastatin (n=401 [29%]), rosvastatin (n=188 [13%]), simvastatin (n=185 [13%]), and fluvastatin (n=153 [11%]). The median daily statin dose was 10 mg for rosvastatin, 20 mg for
atorvastatin, pravastatin and simvastatin and 80 mg for fluvastatin.

In general, the three motivation groups were well balanced regarding Prochaska stages of change. At baseline, compliance with dietary guidelines was more frequent than compliance with physical activity guidelines: nearly 60% of the patient reported restriction in fat diet for more than 6 months when only approximately 45% of the patient reported exercising three times or more per week during at least 20 min. for more than 6 months.

After the initial blood sampling and before the start of intervention, irrespective of the motivation randomisation group, most of the patients were motivated on diet and physical exercise. In fact, more than three quarters of the physicians gave oral counselling on lifestyle change not given by randomisation group in addition to the leaflet of their randomisation group (Table 2).

Improvement in stage of change in patients in a pre-action stage at baseline

At the end of the trial, most of the patients in a pre-action stage of change at baseline had improved their Prochaska
Table 1 Baseline characteristics of patients by motivation randomisation groups.

<table>
<thead>
<tr>
<th></th>
<th>Diet n = 493</th>
<th>Physical activity n = 490</th>
<th>Both n = 428</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60.4 (10.6)</td>
<td>60.5 (11.1)</td>
<td>61.0 (10.7)</td>
</tr>
<tr>
<td>Male</td>
<td>325 (66)</td>
<td>330 (67)</td>
<td>267 (62)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2 (4.2)</td>
<td>27.2 (4.3)</td>
<td>27.1 (4.0)</td>
</tr>
<tr>
<td>Obesity</td>
<td>105 (21)</td>
<td>115 (23)</td>
<td>91 (21)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>72 (15)</td>
<td>61 (12)</td>
<td>58 (14)</td>
</tr>
<tr>
<td>Treated hypertension</td>
<td>258 (52)</td>
<td>228 (47)</td>
<td>227 (53)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>57 (12)</td>
<td>57 (12)</td>
<td>38 (9)</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>11 (2)</td>
<td>11 (2)</td>
<td>11 (3)</td>
</tr>
<tr>
<td>History of coronary artery disease</td>
<td>220 (45)</td>
<td>233 (48)</td>
<td>194 (45)</td>
</tr>
<tr>
<td>History of myocardial infarction</td>
<td>111 (34)</td>
<td>106 (31)</td>
<td>71 (24)</td>
</tr>
<tr>
<td>Lower limb arteriopathy</td>
<td>48 (15)</td>
<td>41 (12)</td>
<td>45 (15)</td>
</tr>
<tr>
<td>Total-C (mmol/L)</td>
<td>6.1 (1.1)</td>
<td>6.0 (1.1)</td>
<td>6.0 (0.9)</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>3.9 (0.9)</td>
<td>3.9 (1.0)</td>
<td>3.9 (0.8)</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.4 (0.4)</td>
<td>1.4 (0.4)</td>
<td>1.4 (0.4)</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.7 (0.9)</td>
<td>1.6 (0.9)</td>
<td>1.6 (0.8)</td>
</tr>
</tbody>
</table>

Mean (standard deviation) or No. patients (%).

stage of change by at least one level whatever the lifestyle parameter (Fig. 2). Among the 593 patients who were in a pre-action stage of change for physical activity at baseline, 300 (50.6%) patients had improved their stage of change by at least one stage by the end of the trial and most of them had started to exercise at least three times per week for 20 min. This proportion was evenly distributed across physician randomization groups ($p = 0.21$).

On the other hand, 142/216 (65.7%) patients with no restriction in fat diet at baseline had improved their stage of change by at least one stage at end of trial (Fig. 2). Patients of Group 2 in a pre-action stage of change for fat consumption at baseline were less likely to have started decreasing fat consumption at end of trial than in the two other randomization groups (Fig. 2, $p = 0.001$ between groups).

Lipid data at end of trial

The mean duration of ezetimibe treatment was 72 ± 16 days. Overall, 869 (62%) patients achieved target lipid goals (defined as LDL less than 3 mmol/L [115 mg/dL] and total cholesterol less than 5 mmol/L [190 mg/dL]) (95% confidence interval [59%–64%]). No significant difference was shown between groups ($p = 0.34$ with no adjustment except on cluster, $p = 0.59$ between groups after adjustment on all covariates) (Fig. 3). In 725 (51%) patients, LDL-C was below 2.58 mmol/L (100 mg/dL) at the end of trial.

The mean effect on LDL-C lowering efficacy was $30.4 ± 19.3\%$ overall and was similar across randomization groups ($p = 0.82$ with no adjustment except on cluster, $p = 0.59$ between groups after adjustment on all covariates) (Fig. 4). No significant difference was found between randomisation groups for any of the lipid parameters (Fig. 4). Mean HDL-C did not change and TG slightly decreased ($−7.5 ± 35.6\%$) in all motivation randomisation groups ($p = 0.66$ between groups with no adjustment except on cluster, $p = 0.62$ after adjustment on all covariates).

Safety and tolerability of ezetimibe

Elevations in CK ≥ 5 × ULN were observed in one patient at baseline and in two (0.1%) patients after start of ezetimibe. Transaminases ≥ 3 × ULN were observed in four (0.3%) patients at baseline and in one (0.1%) patient on statin and ezetimibe. No rhabdomyolysis (defined as reported by the investigator or CK ≥ 5 × ULN with clinical symptoms or CK ≥ 10 × ULN with or without clinical symptoms) was reported. Myalgia or cramps were recorded in 38 (3%) patients on statin and ezetimibe. Treatment was stopped because of side effects in 50 (3%) patients.

Table 2 Motivation of the patient by the physician by physician randomisation groups.

<table>
<thead>
<tr>
<th>Counselling given by the physician</th>
<th>Randomisation group of the physician</th>
<th>Diet n = 493</th>
<th>Physical activity n = 490</th>
<th>Both n = 428</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counselling on diet</td>
<td></td>
<td>481 (98%)</td>
<td>383 (78%)²</td>
<td>402 (94%)</td>
</tr>
<tr>
<td>Counselling on physical activity</td>
<td></td>
<td>359 (73%)²</td>
<td>476 (97%)</td>
<td>403 (94%)</td>
</tr>
</tbody>
</table>

² Oral counselling on lifestyle change not given by randomisation.
Discussion

This trial is the first to compare patient counselling strategies in patients at risk of cardiovascular disease using the Prochaska transtheoretical model.

It seems easier to make a patient decrease his/her fat consumption than to start or increase physical exercise. In TWICE, compliance with diet guidelines was more often reported at baseline than compliance with physical exercise recommendations and with intervention, stage of change for fat consumption was more likely to improve than stage of change of physical exercise in pre-action patients. This is as odds with a previous study performed in the United States which reported that physical activity was more improved than fat consumption [27]. Country habits might explain this discrepancy.

Within the TWICE study, ezetimibe and lifestyle changes were very effective in achieving LDL targets in high-risk patients with persistently elevated cholesterol levels despite statin monotherapy. LDL-C through the use of statins has been shown to be an extremely effective method for

Figure 2. Percentage of patients in a pre-action stage of change at baseline with at least one improvement in stage of change. Pre-action is defined by a precontemplation, contemplation or preparation stage of change. Only patients in a preaction stage of change at baseline are displayed. Preaction = precontemplation, contemplation or preparation stage of change. Statistical comparison between groups done only for Physical activity and Decrease in fat consumption.

Figure 3. Percentage of patients at cholesterol target goals after treatment by motivation randomisation groups.

Figure 4. Mean percentage change in lipid parameters by motivation randomisation groups. Mean percentage change with standard error (adjustment on cluster only).
lowering cardiovascular risk [28]. Within the TWICE study, if the administered statin dose was often lower than the standard statin dose, the 30% LDL-C reduction observed in the present study is more important than what might have been expected after doubling the statin dose and slightly more than the 25–26% expected after addition of ezetimibe in the context of clinical trials [13,29–31]. In another study in 256 patients, treated by statin for at least four weeks, addition of ezetimibe led to a more than 35% LDL-C reduction, however, statin doses were lower in the present trial [32].

Although the interpretation is limited by intergroup crossover by physicians, a smaller than anticipated trial size and by the absence of a true control group managed conventionally without structured counselling, the almost identical lipid changes observed in the three groups suggest that all motivation strategies have similar and possibly limited short term efficacy on lipids. This is consistent with other published studies [33–35]. In TWICE, counselling was given only once and it cannot be ruled out that repetition of counselling over a longer duration would have impacted more lipid outcomes. Furthermore, long-term changes in lifestyle, including physical exercise and diets high in fruits, vegetables, whole grains, and unsaturated fatty acids are expected to decrease cardiovascular risk per se independently of their effect on conventional risk factors [2].

According to the European guidelines on cardiovascular prevention, moving forward in small consecutive steps is one key to successful long-term change in behaviour [36]. However, results of the present study suggest that counselling on diet and physical activity can be given simultaneously as recommended by the French recommendations on treatment of dyslipidemia updated in 2005 [37]. It is noteworthy that TWICE was started before the release of those recommendations and was based on the European and American guidelines [1,2,16].

We cannot rule out that compliance to lipid-lowering medications also increased with intervention. It is estimated that 60% of individuals prescribed lipid-lowering medications are non adherent and motivation based on the Prochaska transtheoretical model improves adherence [27,38].

In this high-risk population, controlling cholesterol levels is of particular importance and the dramatic LDL-C reduction allows 62% of patients not controlled by statin monotherapy to reach the therapeutic goal. In addition, 51% of the patients had a LDL-C below 2.58 mmol/L (100 mg/dL) at trial end, a level which has been suggested to be an appropriate target for most of the patients at high-cardiovascular risk, according to the updated American and European guidelines; the last ones being made available after the start of TWICE [36,39].

Despite a greater reduction in LDL-C, the percentage of patients at goal in the TWICE study is slightly lower than in an American community-based, double-blind randomized trial of ezetimibe added to statin therapy [13]. However, baseline LDL-C levels (3.2 mmol/L) were lower than in the present study.

The present study confirms the good efficacy on lipid levels and short-term tolerability of ezetimibe added to lifestyle changes and statins.

Conclusions

In conclusion, in the three groups, more than 60% patients met target LDL-C levels. The marked impact (−30%) on LDL-C, although similar between the three groups, slightly exceeds usual LDL-C reductions achieved by this dose of ezetimibe. Decreasing fat consumption seems easier than increasing physical activity. TWICE study confirms the good efficacy on lipid levels and short-term tolerability ezetimibe on top of statins.

Funding

Funding and sponsorship for the TWICE trial were provided by Laboratoires Merck Sharp & Dohme-Chibret, Paris France, on behalf of MSP Singapore Company, LLC.

List of the Investigators who enrolled at least one patient

AARRAS Reda 06240 BEAUSOLEIL (Cardiologue), ABOU BADRA Bernard 31076 TOULOUSE Cedex 3 (Cardiologue), ADEGNON Kedi 09200 St G IRONS (Cardiologue), AGBESSI KOSSI Apollinaire 59000 L ILL (Cardiologue), AIMOUCH Naceur 27000 EVREUX (Cardiologue), AKESBI Abdel 95602 EAUBONNE (Cardiologue), ALBESSARD Franck 14000 CAEN (Cardiologue), ALLAOUCHICHE Thierry 13300 Salon de Provence (Cardiologue), ALMAZOR Michel 44600 St NAZAIRE (Cardiologue), AMEUR HEDRICH Christiane 68100 MULHOUSE (Cardiologue), AMALIKY Ahmed 68200 MULHOUSE (Cardiologue), AMMOR Mohammed 81000 ALBI (Cardiologue), AMORETTI Richard 95000 CERGY (Cardiologue), ANAYE Bassem 59120 LOOS (Cardiologue), ANDRIEU Marc 12000 RODEZ (Cardiologue), ANGAUENOT Thierry 25000 BESANCON (Cardiologue), ANTELIN Charles-Harry 17000 LA ROCHELLE (Cardiologue), ARNOU Robert 49000 ANGERS (MG), ASSULIN Teddy 95310 St Ouen L’Aumone (Cardiologue), ASSUNCAO Armindo 59220 DENAIN (MG), ATTALI Pierre 67000 STRASBOURG (Cardiologue), AUBERGE Jean-Maurice 13270 f os sur mer (Cardiologue), AUBERT Jean-Marc 06370 Mouans Sartoux (Cardiologue), AUBERT Pierre 83110 SANARY Sur MER (Cardiologue), AUBRY Jacques 13150 TARASCON (Cardiologue), AUBOIN Philippe 75007 PARIS (Cardiologue), AUPIAIS Frédérique 44240 LA CHAPELLE SUR EDRS (MG), AURE Pascal 49000 ANGERS (MG), AVINEE Pierre 80094 AMIENS Cedex 3 (Cardiologue), AYRIVIE Pierre-Antoine 34500 BEZIERS (Cardiologue), BAHSOUN Roda 31077 TOULOUSE Cedex (Cardiologue), BAILLY Sylvain 91390 MORSANG SUR ORGE (Cardiologue), BALADIER COULEAUD Valérie 91490 MILLY LA FORET (Cardiologue), BALIGAUDOU So Orianarain 62140 HESDIN (Cardiologue), BARBEAU Pascal 33200 BORDEAUX (Cardiologue), BARBIN Patrick 53200 CHATEAU GONTIER (MG), BARRIERE Serge 64500 St Jean De Luz (Cardiologue), BARTHEZ Francois 25300 PONTARLIER (Cardiologue), BASLE Jérome 17137 NIEUL SUR MER (MG), BATTLE Louis 37000 TOURS (Cardiologue), BATY Alain 53000 LAVAL (MG), BAZILE Brigitte 31290 Villedieu-Le-Paleud (Cardiologue), BEAUD Thierry 65000 TARBES (Cardiologue), BEIGBETER Jean-Yves 64000 PAU (Cardiologue), BELLEFLEUR
LYON (Cardiologue), FISCHBEIN Laurent 77500 CHELLES (Cardiologue), LINOIS Pascale 13340 ROGNAC (Cardiologue), FONTANAY Franck 42400 ST CHAMOND (Cardiologue), FOUBERT Olivier 53200 CHÂTEAU GONTIER (MG), FOURNIER Jean-Bernard 30000 NIMES (Cardiologue), FOURNIER Jean-François 76190 YETOT (Cardiologue), FOURNIER Eric 05000 GAP (Cardiologue), FRADIN Dominique 49300 CHOLET (Cardiologue), FRAYSE Jean-Bernard 19100 Brive La Gaillarde (Cardiologue), FRITZ André 67600 SELESTAT (Cardiologue), FRUCHART Bruno 62400 BETHUNE (Cardiologue), GAILLARDE Bernard 66000 PERPIGNAN (Cardiologue), GALEY Arsène 02400 CHÂTEAU THIERRY (Cardiologue), GANDON Thierry 51100 REIMS (Cardiologue), GARANDEAU Marie 71600 Paray-Le-Monial (Cardiologue), GARCIA Philippe 83300 DRAGUIGNAN (Cardiologue), GARTENLAUB Olivier 94700 MAISONS ALFORT (Cardiologue), GASTON François Gilles 31320 Castanet Tolosan (Cardiologue), GAUSSENDAR Michel 81000 ALBI (Cardiologue), GAUTHIER Jean 13200 ARLES (Cardiologue), GENOT Marcel 54000 NANCY (Cardiologue), GERBE Alain 11400 BAYEUX (Cardiologue), GERNIGON Patrick 44470 CARQUEFOU (MG), GILLET Thierry 83000 TOULON (Cardiologue), GIRAUD Patrick 84300 CAVALLO (Cardiologue), GOBERT JACKEL Véronique 33150 CENON (Cardiologue), GOISSEN Patrick 40800 AIRE SUR ADOUR (Cardiologue), GOMBAUD Daniel 49000 ANGERS (MG), GORISSE Alain 59160 LOMME (MG), GOURDON Olivier 66000 PERPIGNAN (Cardiologue), GOURDON SARAZIN Dominique 78600 MAISONS LAFFITTE (Cardiologue), GRANGER Gérard 36100 LA ROCHELLE (Cardiologue), GRASSEY Bertrand 95330 CHÂTEAU THIERRY (Cardiologue), GRILLET Gianni 59138 BACHANT (MG), GRENIER Olivier Jean Yves 75008 PARIS (Cardiologue), GRIVET Bruno 69003 LYON (Cardiologue), GROS André 46000 CAHORS (Cardiologue), GUDIN DE VALLERIN Michel 75116 PARIS (Cardiologue), GUEJJ Pierre 75009 PARIS (Cardiologue), GUEJJ Dominique 75116 PARIS (Cardiologue), GUEJJ Pierre 12200 Villefranche De Rouergue (Cardiologue), GUEZ Philippe 84200 CARPENTRAS (Cardiologue), GUILLAUM Jean-Pierre 17000 LA ROCHELLE (Cardiologue), GUILLOT Philippe 34200 SETE (Cardiologue), GUILLAUME Jean-Paul 31410 LONGUES (Cardiologue), GUICKOWSKI Alain 60300 NICE (Cardiologue), GURDA Marek 78500 SARTROUVILLE (Cardiologue), GUTEL Bertrand 95330 DOMONT (Cardiologue), HADDAD Jean-Claude PARIS (Cardiologue), HALFON André 31270 CUGNAUX (Cardiologue), HALLALI Patrick 38000 GRENoble (Cardiologue), HALPHEN Ovadia Christine 78100 St Germain En Laye (Cardiologue), HAMEL Emmanuel 37000 TOURS (Cardiologue), HAMWI Abdel Hamid 75019 PARIS (Cardiologue), HANRION Pascal 49110 MONTREVAULT (MG), HASSAN Gilbert 13007 MARSEILLE (Cardiologue), HASSON Bernard 13009 MARSEILLE (Cardiologue), HELMS Eric 69800 ST PRIEST (Cardiologue), HELOU Nabil 60300 SENSILIS (Cardiologue), HERENT Marc 59410 ANZIN (MG), HETHUIN Jean-Michel 59400 CAMBRAI (Cardiologue), HEULS Sébastien 59650 Villeneuve D’Ascq (Cardiologue), HIJAZI Bernard 30090 NIMES (Cardiologue), HITA André 84400 APT (Cardiologue), HODROGE Henri 27200 VERNON (Cardiologue), HOFFMAN Olivier 75018 PARIS (Cardiologue), HOROVITZ Daniel 91600 Savigny Sur Orge (Cardiologue), HOURAY Antoine 14100 LISIEUX (Cardiologue), HUG Christian 66000 PERPIGNAN (Cardiologue), HUYGHE Dominique 59300 VALENCE (MG), IGIBABEL Philippe 49125 TIERCE (MG), ISOARD Jacques 06140 VENCE (Cardiologue), JAUFFRET Bernard 13007 MARSEILLE (Cardiologue), JEAN Stéphane 17200 ROYAN (Cardiologue), JEANOINE Henry 49000 ANGERS (Cardiologue), JELEN Pascal 17000 LA ROCHELLE (MG), JEREMIAZ Richard 75013 PARIS (Cardiologue), JOSEPH Jean-Paul 83150 BANDOL (Cardiologue), JUBERT Rémy 37000 JOUE LES TOURS (Cardiologue), JULIEN Bruno 41010 DAX (Cardiologue), JULLIEN Jean-Louis 75017 PARIS (Cardiologue), KADOUCH James 75017 PARIS (Cardiologue), KALESKA Patricia 06600 ANTIBES (Cardiologue), KAYL BOILEVIN Dominique 57038 METZ Cedex 01 (Cardiologue), KEDRA Antoni Wojciech 75010 PARIS (Cardiologue), KERRAUD Louis 78450 VILLEPREUX (Cardiologue), KETELERS Régis 95280 ARMENTIERES (Cardiologue), KHAN Moin 02000 LAON (Cardiologue), KHANZADAR Guy 75011 PARIS (Cardiologue), KHOUY François 11300 LIMOUX (Cardiologue), KHOURY Kamal 06190 Roquebrune Cap Martin (Cardiologue), KOHAN Patrick 54000 NANCY (Cardiologue), KORCZYNSKI Robert 26000 VALENCE (Cardiologue), KOZLOWSKI Francis 59200 TURCOING (Cardiologue), KREBS Renaud 13200 ARLES (Cardiologue), KRONEK Didier 59590 RAISME (MG), LABEDAN Frédéric 92500 RUEIL MALMAISON (Cardiologue), LABIB Marie 78340 Les Clayes Sous Bois (Cardiologue), LABIERE Christian 93300 AUBERVILLAGERS (Cardiologue), LAINE Eric 80094 AMIENS Cedex 3 (Cardiologue), LAISNE Raoul 53000 LAVAL (MG), LAMBERT Michel 49100 ANGERS (MG), LANDEL Rémi 22015 St BRIEUC Cedex 1 (Cardiologue), LANG Philippe 68200 MULHOUSE (Cardiologue), LAPEREY Guy 81000 ALBI (Cardiologue), LARLET Jean-Marie 56600 LANESTER (Cardiologue), LAUGA Dominique 64300 ORTHEZ (Cardiologue), LAURENT Jean-Claude 18100 VIERZON (Cardiologue), LAURIER Bernard 78400 CHATOU (Cardiologue), LAURY Patrice 12000 RODEZ (Cardiologue), LAVABRE Guy 83140 Six Fours Les Plages (Cardiologue), LAVIGNE Guy 37000 TOURS (Cardiologue), LE MENAGER Hervé 44400 NANTES (Cardiologue), LE PELERIN Jean-François 56100 LORIENT (Cardiologue), LEANDRI Michel 63000 CLERMONT FERRAND (Cardiologue), LECERF Jean-Michel 59000 LILLE (Cardiologue), LEHUJEUR Catherine 34110 FRON- TIGNAN (Cardiologue), LEIBER Christian 68200 MULHOUSE (Cardiologue), LEJAY Dominique 59690 VIEUX CONDE (MG), LEMAIRIER Pierre 62806 LIEVIN Cedex (Cardiologue), LEMME Philippe 06200 NICE (Cardiologue), LEPENNEC Pascale 49300 CHOLET (MG), LEROY Pierre 49000 ANGERS (MG), LEROY Yves 49000 ANGERS (MG), LERUSTE Sébastien 59310 LAN- DAS (MG), LEVEAU Xavier 49000 ANGERS (MG), LEVY Alain 75009 PARIS (Cardiologue), LEVY Richard 06700 St Laurent Du Var (Cardiologue), LEY Nicolas 65000 TARBE (Cardiologue), LIM Du Quang 92400 COURBEVOIE (Cardiologue), LOBEL Christian 62000 ARRAS (Cardiologue), LONGERE Philippe 83300 DRAGUIGNAN (Cardiologue), LONQUEVILLE Grégroire 58000 NEVERS (Cardiologue), LOPEZ Jean-Philippe 59330 HAUTMONT (MG), LORENTZ Christian 90000 BELFORT (Cardiologue), LOUCHART Jean-Christophe 62400 BETHUNE (Cardiologue), MACAREZ Marcel 59287 GUESNAIN (Cardiologue), MAES Damien 59200 TURCOING (Cardiologue), MAFERT Etienne 17000 LA ROCHELLE (Cardiologue), MAGNUS Patricia 68800 THANN (Cardiologue), MAIECH Elisebeth 44240 LA CHAPELLE SUR EREDRE (MG), MAIGNEN Jean-Pierre 25000 BESANCON (Cardiologue), MAILLY Denys 31370 BERAT (Cardiologue), MAKKI Hamid 21400 Chatillon sur Seine (Cardiologue), MALDONADO Philippe 38130 ECHI- ROLLES (Cardiologue), MANCHET Guy 25000 BESANCON
Results of TWICE trial

References

Results of TWICE trial 735

