Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise

Adaptations neuromusculaires et musculo-tendineuses à l’exercice excentrique isotonique et isocinétique

G. Guilhem, C. Cornu, A. Guével *

EA 4334, UFR STAPS, laboratoire motricité, interactions, performance, université de Nantes, 25 bis, boulevard Guy-Mollet, BP 72206, 44322 Nantes cedex 3, France

Received 12 October 2009; accepted 16 April 2010

Abstract

Objective. – To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings.

Synthesis. – An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise.

Conclusion. – The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies.

© 2010 Elsevier Masson SAS. All rights reserved.

Keywords: Lengthening contraction; Isotonic; Isokinetic; Muscle architecture; Electromyography

Résumé

Objectif. – Présenter les propriétés de la contraction excentrique et comparer les adaptations neuromusculaires et musculo-tendineuses induites par les modes isotonique et isocinétique.

* Corresponding author.
E-mail address: arnaud.guevel@univ-nantes.fr (A. Guével).
Conclusion. – La littérature semble montrer que le mode isotonique induit des gains de force supérieurs au mode isocinétique, ce qui pourrait s’expliquer par une augmentation de l’activation neuromusculaire plus importante. Toutefois, les adaptations induites par chaque modalité restent difficiles à déterminer, en l’absence d’études comparatives standardisées.

Mots clés : Contraction excentrique ; Isotonique ; Isocinétique ; Architecture musculaire ; Électromyographie

1. English version

1.1. Introduction

Eccentric contractions occur when the load torque (i.e. resistance moment) imposed on the muscle or a group of muscles is greater than the muscle torque produced by all activated motor units (i.e. motor moment) [32]. The imposed lengthening on the muscle-tendon system that goes along with force production is given the term of “lengthening contraction” as opposed to concentric contractions (shortening contraction). During this process, the muscle absorbs energy developed by an external load, this is why eccentric training is called “negative work” [3], thus underlining its slowing-down role. The energy absorbed can be (i) dissipated as heat, in which case the muscle is functioning as a shock absorber or a damper (i.e. going down the stairs, slowing down at then end of a run), or it can be stored temporarily as elastic recoil potential energy that can subsequently be recovered (i.e. locomotion, jumps with prior gained momentum) [24]. These observations brought several authors to compare the muscle-tendon system behavior as a spring that cyclically absorbs and recovers elastic recoil energy [105].

During an eccentric contraction, the shock-absorber-spring properties of the muscle-tendon system contribute to the external torque produced. The latter is higher than the one developed during a concentric contraction for a given angular velocity [41]. The forced lengthening of the muscle associated to important tensions both cause a deterioration of the cytoskeleton and a local inflammation responsible for Delayed Onset Muscular Soreness (DOMS) [65]. In order to protect the muscle-skeleton system of these damages, inhibition mechanisms are implemented by the nervous system. These specific responses of the neuromuscular system during eccentric work brought several authors to focus on the chronic impact of eccentric exercise in the framework of strength training [110] and rehabilitation programs [103]. This type of contraction work can by applied to sports performance and rehabilitation training because it will solicit the muscle spring in a maximal and above-maximal manner, leading to major strength gains, but it will also reinforce the muscle-tendon system by stimulating collagen’s synthesis [91] and activating the genes responsible for cellular development and growth [49].

Eccentric exercise is classically done at constant velocity (isokinetic, IK) or against constant external load (isotonic, IT), inducing different mechanical loads depending on the type of training (IK or IT), leading to specific neuromuscular and muscle-tendon adaptive mechanisms. This literature review will first explore the nervous, mechanical and structural factors of eccentric contractions before presenting the adaptive mechanisms induced by eccentric training on these various factors. Finally, in a synthesis, we will present and compare strength gains and adaptive processes, induced by the various training protocols using IT or IK eccentric exercise, to determine the specific relevance of using these two types of exercise modes for improving muscle qualities.

1.2. Properties of eccentric contraction

1.2.1. External torque

During an eccentric muscle contraction, the external mechanical load exerted on the solicited muscle triggers a stretching of the elastic recoil energy components of the muscle-tendon system, which in return, restitutes this stored force-producing energy additional to the force produced by the solicited muscle fibers. Consequently, this contraction mode requires a lesser metabolic energy cost for the same force production compared to concentric contractions [3]. Thus, the maximal torque developed by a muscle group during eccentric contraction is higher than the torque produced during isometric and concentric contractions (for a given angular velocity), reaching 100 to 180% of the maximal isometric force according to the different studies [54]. However, some research works do not report any significant differences between the maximal eccentric and isometric torques. There are some contradictions regarding the type of relationship between torque and movement velocity (“torque-velocity”) defined by using isokinetic ergometers, during eccentric contraction. Most studies do agree that the maximal eccentric torque is not velocity-dependent (Fig. 1) [54]. However, the shape of “torque-velocity” relationship seems to be related to the individual’s sex, age or even level of strength [18].

1.2.2. Muscle activation strategies

Eccentric contractions require unique central activation strategies by the nervous system specific to this type of action. In fact, electroencephalographic (EEG) measurements show a higher and earlier cortical activity during submaximal and maximal eccentric contraction of the forearm flexor muscles [34], suggesting a different programming process in the central nervous system (CNS) for eccentric contractions than concentric contractions. The electromyographic (EMG) activity measured on the skin surface during maximal eccentric muscle work is lower than the one recorded during concentric contractions for a given angular velocity [1,58,67,130]. The CNS seems to be incapable of recruiting in a maximal manner all motor units (MUs) of a muscle during an eccentric contraction [42,73], this is even more visible with higher
mechanical stress on a fewer MUs [7,82]. The unit tension lower discharge rate [120] or a lower activation of the MUs angular velocities [55]. This EMG decrease might indicate a Komi et al., 2000 [59]; ~ contraction; ~ defined the “force–velocity” relationship. MVC : maximal isometric voluntary traction (MVC) according to the angular velocity reported in several studies that inhibition degree of the agonist muscle comprised between 5 and 30%, during eccentric contractions [6,8,28,129] versus 4 to 21% in concentric mode [107]. Some hypotheses have been suggested to explain the mechanisms responsible for this limited muscle activation. The type Ib afferents from the Golgi tendon organ (sensitive to muscle tension) can, for example, have an inhibitor impact on the α motoneurons activity. However, the impact from the Golgi tendon organ is not the primary mechanism able to explain this activation decrease during an eccentric contraction [96]. The efferent command can also be modulated by the Ia and II afferents, stemming from the neuromuscular spindles that give information on the muscle’s length (static sensitivity) and length variation (dynamic sensitivity) to the nervous system. Peripheral sensory receptors exert an intense retroaction on the motoneurons α during eccentric contractions; this retroaction seems to be canceled by the central and peripheral pre-synaptic inhibition of the Ia afferents, as shown in studies on the Hoffmann (H) reflex in dynamic settings [25,26]. The H-reflex is a component of the stretching reflex characterized by an EMG response recorded during a muscle contraction triggered by submaximal electrical stimulation of the motor nerve. This reflex is the result of the motoneurons α activation via the Ia afferents coming from the neuromuscular spindles. The H-reflex amplitude is linked to the number of activated motoneurons and thus reflects the excitability of this pool of motoneurons and the synaptic transmission of Ia afferents. It represents a tool able to evaluate a modulation of the monosynaptic reflex activity. During submaximal eccentric contractions, this H-reflex is lower than during concentric contractions, suggesting the existence of a pre-synaptic inhibition of the Ia afferents [26,84,111]. This process could also explain the limited activation observed during an eccentric contraction. The mechanisms that highlight a specific muscle activation during eccentric contractions [32] imply modulations in the recruitment order, discharge rate and recruitment threshold of MUs. Whereas some studies report that an eccentric contraction is associated to selective activation of high-threshold MUs [48,67,81], other studies show a recruitment order following the size principle [38], for concentric and eccentric contractions [23,89,120,124]. If Stotz and Bawa [124] observed the recruitment of MUs at a high threshold during eccentric contractions, this was only obtained for erratic force or movement profiles. These data suggest that a change in the recruitment of MUs during an eccentric contraction can be observed at times without validating a preferential recruitment of fast MUs.

A voluntary contraction of agonist muscles is associated to an activation of the antagonist muscles (or co-activation) and can be quantified by surface EMG [33,121]. In that case the external torque is the result of the torque produced by the agonist muscles, minus the torque generated by antagonist muscles. The results regarding the impact of the contraction mode on the level of co-activation are disparate according to the different studies. The impact could be greater during eccentric muscle contractions (12% in eccentric versus 7% in concentric for plantar flexor muscles) [96] or concentric contractions (37 to 48% in concentric versus 25 to 30% in eccentric; knee extensor muscles) [56], whereas other studies show similar co-activation values regardless of neuromuscular solicitation type [6,99]. Such a mechanism decreases the levels of torque produced and stabilizes the joint in regards to the high muscle tensions induced by eccentric contractions.

1.2.3. Behavior of muscle structures

The level of pre-activation prior to an eccentric contraction seems to have an impact on the evolution of muscles fascicles’ length. In vitro studies on isolated muscle fibers suggest that the development of an isometric force is necessary before any length change in order to ensure a complete pre-activation of the MUs [31]. During eccentric contraction, the fascicle pennation angle of the tibialis anterior is independent from movement angular velocity [104]. Furthermore, for high levels of angular velocity, the fascicle pennation angle measured in eccentric contraction is greater and the length of the fascicle is lower compared to a concentric contraction, inducing greater muscular thickening in eccentric mode. Nevertheless, the mechanical behavior of the fascicles and tendons could also be related to the modality, intensity of the eccentric exercise as well as the muscles and joint systems recruited [104]. However, all studies validate the large contribution of the tendon tissues for the lengthening of the muscle-tendon system, estimated at 45% for the gastrocnemius medialis [16], even if we find great inter-individuals variations. The various evolutions of the fascicle length during the contraction (i.e. shortening, lengthening or constant length) could be linked to the type
of exercise performed, which could have an impact on the elastic spring recoil components and would optimize the efficacy of the stretch shortening cycle. The energy restituted by the elastic spring recoil components in eccentric mode produces an additional force without any ATP consumption. This process, associated to a limited recruitment of MUs, leads to a lower metabolic cost for the muscle [3]. Eccentric actions produce higher forces while consuming less oxygen and energy than an equivalent concentric training session [88]. Energy is absorbed in the spring recoil properties of the muscle and tendon, thus leading to a lengthening of these structures in response to the stretching. The tendon has a viscoelastic behavior because of its nature, rich in collagen fibers (86% of the organic tissue mass), and the interactions existing between collagen and non-collagen proteins (i.e. proteoglycans). The muscle elastic property is due to the interactions of actin and myosin, the extracellular conjunctive tissue and to the elastic structure of filaments maintaining sarcomere alignment of muscle cells. This elastic complex is made of a large filamentous protein called titin (or connectin) and desmin, both contributing to the spring property of the muscle during an eccentric contraction [66].

The tendon’s viscoelastic properties make it more flexible than the muscle at lower stretching levels. Under these conditions, tendons can absorb more energy but are less efficient for force transmission. At higher tension levels, they become less flexible and stiffer, thus they are able to move heavier loads. These elements could explain that during eccentric contractions, the muscle fascicles’ length of the gastrocnemius medialis remains constant while the muscle fascicles of the vastus lateralis lengthen, because they are exposed to greater mechanical constraints.

1.2.4. Muscle damages

The eccentric mode exerts a high so-called “above maximal” mechanical strain on the muscle-tendon system. The high tension levels that come along with the forced lengthening of this system could lead to micro lesions of the muscle fibers [20]. At a cellular level, these damages include a disorganization of some sarcomeres and Z-line streaming disruption (i.e. “wavy” appearance [65]), associated to sarcolemmal lesions, dilation of the transverse tubule system and fragmentation of the sarcoplasmatic reticulum [65]. These damages are followed by an inflammatory response with a gradual increase in the soreness of the involved muscles with a delayed onset after exercise called Delayed Onset Muscular Soreness (DOMS). Eccentric exercise is the main contributor to this pain commonly called “muscle aches”. This pain occurs 12 to 48 hours after intense or unfamiliar eccentric exercises with a peak between 24 to 72 hours before progressively disappearing in 5 to 7 days. DOMS are associated to a decrease in force production capacity (−10 to −60% on the maximal voluntary isometric contraction (MVC), according to the studies [74,80]), restored in about a week or so. The impact of these muscle damages during a second eccentric exercise session is lower than for the first session (i.e. protecting effect, Section 1.3.1.1) [74].

Several authors have tried to identify if the damages induced by eccentric training affected one type of muscle fibers in particular. The results of several studies, in human and animal models, tend to validate that intense eccentric exercise damages especially Type II (IIB in particular) muscle fibers [36]. This can partly be explained by the preferential recruitment of fast MUs in the eccentric mode.

The physiological processes of cell regeneration after muscle damages are implied in muscle hypertrophy and thus are necessary to optimize training responses (Section 1.3.1.3). Eccentric muscle exercise as part of a safe muscle-strengthening program remains an interesting method to improve muscle strength. By affecting the motor command, it induces in return some adaptive processes on a structural level.

1.3. Adaptations induced by eccentric training

1.3.1. Structural adaptation

1.3.1.1. Repeated bout effect. Several studies have showed that a first session of eccentric exercise strongly limits the DOMS perceived after the second eccentric exercise session, classically happening at a 1-week interval. This phenomenon is called “repeated bout effect” (RBE) [74]. This first adaptation is characterized by a decrease in muscle damages, lower rediscarge of creatine kinase (CK) and heavy myosin chains, reduced loss of strength and DOMS after a second eccentric exercise session, compared to the first session performed a few days prior. The duration of this adaptive phenomenon varies from a few weeks to 6 months according to different studies. According to Chen [14], the importance of DOMS and plasma CK levels after the first eccentric exercise session have an impact on the RBE. Thus, it is possible that an individual’s sensitivity level to eccentric exercise conditions the importance of this protective effect that sometimes might not be observed [100]. In a recent review, Lieber and Friden [65] bring up RBE’s high level of specificity, which is only valid when the two eccentric sessions are identical.

The adaptations that can potentially explain this RBE are from a nervous, mechanical or cellular origin. Due to this type of fast-setting adaptation, some authors even suggested that eccentric training could improve MUs synchronization and increase their activity level [74]. This process could increase the number of solicited muscle fibers compared to the first session, mainly by recruiting a great number of slow MUs, leading to a better mechanical stress repartition on all activated muscle fibers and thus limiting the risk of myofibrils damages [22,82]. Because of the mechanical origin of these eccentric exercise-induced lesions, some authors suggested that some changes to the mechanical properties of the skeletal-muscle system would protect the muscle against these damages. Indeed, some studies did report an increase of the active or passive stiffness of the muscle-tendon system after eccentric training [98]. These adaptations were respectively attributed to a reorganization of the cytoskeleton proteins, in charge of maintaining the alignment and structure of the sarcomeres (i.e. titin, desmin) and to a quantity increase of the connective tissue in the muscle, thus allowing for a better dissipation of the
mechanical stress during eccentric mode [64]. However, some studies also show that stiffer muscles are more prone to damages [72]. In fact, some studies on “murine” models without desmin showed that these mice were less prone to damages than healthy mice following eccentric exercise. This result was attributed to a greater muscle compliance of these mice thus limiting the number of sarcomeres that could be damaged. The last hypothesis to explain the RBE is the impact of cellular factors, stating that eccentric exercise leads to an increase in serial sarcomeres and changes in the inflammatory response. The addition of serial sarcomeres, shown on animal models [79] and recently, in an indirect manner, on human models [13], could reduce the stretching and thus the sarcomeres’ rupture after an eccentric exercise session. A decrease of inflammation after repeated eccentric training has also been characterized by a reduced activation of the monocytes and neutrophils involved in the inflammatory process [97]. This reduced inflammatory response contributes to the protective effect even if it is difficult to know if this adaptive strategy is the cause or the consequence of a reduced number of damaged myofibrils, or even if the repeated bout effect is a combination of these two processes [74].

1.3.1.2. Strength gains. According to several studies, eccentric training seems to be the most efficient mean to increase the capacities of maximal force that can be exerted in a given movement, mainly compared to concentric training (see Remaud et al. [107] for a detailed review). For example, Hortobagyi et al. [43], report a strength gain of the maximal voluntary isometric contraction 3.5 times greater after a 6-week eccentric program of the knee extensors compared to a concentric training program of the same duration. These results were validated with longer training duration (+24.6% of the initial strength after eccentric training versus +12.5% after concentric training) for the elbow flexors and extensors [83]. Studies focusing on the effects of overload training (100 to 120% of the maximal repetition) during the eccentric phase unveil greater strength gains then during strength training using lighter loads [45]. Thus, it seems that the eccentric part of the training protocol is essential to increase muscle strength. In fact, the contractile part of the muscle-tendon system is solicited to the maximum, thanks to the high torque levels reached in eccentric training. Strength gains obtained in regards to the initial muscle force production capacities go from 1 to 116% for eccentric force, from 1 to 67% for concentric force and from 7 to 45% for isometric force [43,86]. If several authors remain attached to the principle of strength gains specificity according to the training mode [30], it appears that eccentric training is more efficient for improving the maximal concentric force of a muscle group [52]. Finally, strength gains induced by eccentric training seem very specific to the movement velocity used [110].

1.3.1.3. Hypertrophy. One of the major adaptive processes induced by eccentric training is muscle hypertrophy, representing one of the determining factors for force production capacities. Beyond 6 to 8 weeks of training, the improvement in muscle for capacities is coupled to an increase in muscle mass. The eccentric component of the training is then essential to induce the surface increase of muscle fibers’ transversal section [29]. Training programs that include eccentric actions lead to greater muscle mass gains than training aiming to achieve this goal on a concentric mode [35,58]. Higbie et al. [40] showed an increase in quadriceps cross-sectional area (CSA) after 10 weeks of an eccentric training compared to a similar training in concentric mode. Similar results were obtained for elbow flexors [35]. These results recently brought researchers to focus on the effects of eccentric training on the gene expression of the solicited muscle cells. In fact, eccentric training represents for muscle cells a specific mechanical constraint that can modify the several gene expression profiles [39,57], via the mechanical signaling pathways made of proteins that are sensitive to the mechanical status of muscle cell (i.e. Microtubules-Associated Proteins or MAP proteins). An eccentric session triggers, 6 hours post-exercise, the progressive activation of genes responsible for cellular growth and development, involved in cellular hypertrophy processes in humans. The expression levels of these genes are more stimulated by eccentric actions than by isometric or concentric actions [9,15,60]. Introducing eccentric exercise during so-called “hypertrophy” training phases seems to be an efficient mean to optimize muscle mass gain.

1.3.1.4. Changes in muscle fiber types. The changes in fiber types induced by eccentric training are similar to those induced by other strength training programs, i.e. an increase of the intermediate type muscle fibers (IIa, IIa/IIb) able to reach +12% [43], with sometimes a decrease in the number of type IIb fibers [118]. However, these evolutions remain moderate even not statistically significant in most studies. They do not seem to be responsible for the main adaptation that could explain strength gains observed after eccentric training.

1.3.1.5. Changes in muscle architecture. Recent studies tried to identify the changes of the geometrical organization of muscle fibers induced by strength trainings combining concentric and eccentric exercises [53], eccentric trainings [12] or plyometric trainings [11]. A loaded training phase can increase the pennation angle of muscle fascicles, a process associated to muscle hypertrophy [2]. In fact, the pennation angle is modified by the increase in muscle mass, and its evolution according to the interspace of aponeurosis in hypertrophied muscles. Recently a 21.4% increase of the pennation angle of the vastus lateralis was demonstrated after a 10-week eccentric training program (versus +13.3% after concentric training) [12]. A pennation angle increase leads to a decrease in the force transmitted by a muscle fiber, considered as an isolated fiber. However, in terms of muscle CSA, muscle fibers pennation leads to a physiological CSA of the muscle, defined as the area of the muscle fibers perpendicular to the longitudinal axis of each muscle fiber multiplied by the cosine of the pennation angle [132], which is greater than the anatomical muscle CSA. Since physiological CSA represents the maximum number of parallel actin-myosin cross-bridges...
that can be activated during a contraction, the maximal force production capacity of a muscle is proportional to this physiological CSA and thus to the pennation angle. The increase in the pennation angle leads to an increase quantity of parallel contractile elements, thus higher force production capacities [2].

Regarding the length of muscle fascicles, if some training protocols have not reported any changes for this parameter after strength training [12], other protocols using overload training [116] or high velocities on a polyemic mode [11] have shown an increase in the muscle fascicles length (addition of serial sarcomeres). To our knowledge, only one study focused on the effect of a purely eccentric training on muscle architecture. The authors have unveiled a 3.1% length increase for the fascicles of the vastus lateralis after eccentric training versus 6.3% for a same-duration concentric training without any significant difference between the two training modes [12]. The authors suggested that movement amplitude more than contraction mode or movement velocity was the factor with the most impact on the changes in muscle fascicles’ length. The increase in muscle fascicles’ length also allows for increasing the velocity of the muscle contraction [12]. Thus, eccentric training is an efficient process to improve not only the force production capacities, but also the quality of the muscle power (i.e. result of the torque and velocity of the muscle contractions) essential in most physical and sport activities.

1.3.1.6. Changes in mechanical properties. Classically, eccentric exercise session is followed by an increase in passive muscle-joint stiffness [47]. The latter can be multiplied by two and remains elevated for 4 days after the eccentric training session. This increase in passive stiffness might be explained by the formation of residual actin-myosin cross bridges [62] resulting from an increase in the calcium ions concentration at rest in the muscle fibers, the latter being linked to the rupture of muscle cells’ membranes. Other processes have been suggested to explain this increase in passive stiffness such as edema characterized by muscle swelling compressing the tissues and inducing a painful resistance to passive extension thus increasing the “stiffness sensation” [17]. Finally, the repair process might lead to a permanent increase of passive stiffness because of the restructuring of the connective tissue as suggested in the work of Lapier et al. [64].

When the eccentric exercise is repeated over long periods of time (i.e. training), the muscle-tendon stiffness determined in passive condition decreases. Mahieu et al. [68] showed an increase in joint range of movement (ROM) and a 23% decrease of the passive resistive torque after a 6-week eccentric training program of the plantar flexors. Before that, Morgan and Allen [79] had already reported increased serial sarcomeres in the muscle fibers (+11%), after 1 week of downhill running on a treadmill. These results are in accordance with recent studies showing a modification in the relationship between the maximum torque produced and the joint angle with a shift in peak torque (shift around 15°) towards greater muscle lengths right after eccentric exercise [131]. This modification in muscle length capable of producing the maximal torque is an indicator of the increase in post-eccentric training muscle compliance. This adaptation induced by eccentric training suggests some applications for injury prevention. In fact, the decrease in muscle’s passive stiffness allows for transferring part of the mechanical constraint from the tendon to the muscle, reducing the risks of tendon damage. However, serial elastic components (SEC) made of elastic muscle structures and the tendon increases after eccentric training. Pousson et al. [98] reported an increase for this parameter after 6 weeks of eccentric training of the elbow flexors, at 30 to 45% of the maximal voluntary isometric contraction (MVC). Yet, this increase is not observed for higher levels of force (60 to 80% of MVC). These results were partially validated by the work of Mahieu et al. [68] who reported a 9.5% increase for Achilles’ tendon stiffness measured in active conditions after 6 weeks of eccentric training of the plantar flexors. The increase in SEC stiffness might thus be explained by an increase in tendon stiffness. It could also be the result of an increased stiffness of the actin-myosin cross-bridges or the remodeling of the cytoskeletal proteins responsible for maintaining sarcomere alignment such as desmin or titin. The reorganization of these proteins after the micro-damages induced by eccentric exercise could be one of the processes responsible for the increased stiffness of the elastic component of the muscle. These elastic properties’ changes could promote the restitution of mechanical energy, mainly during stretch shortening cycles.

Furthermore, chronic eccentric exercise is often proposed for the treatment of tendinopathies for its stimulating impact on collagen synthesis, main constitutive element of the tendon and conjunctive tissue [91]. Several studies have also reported an increase in blood flow around tendon cells after eccentric exercise [5,63]. These adaptive processes would justify the relevance of eccentric exercise for strengthening tendon tissues in patients suffering from tendinopathies. However some questions remain, especially regarding specific protocols (i.e. load, movement velocity) to be used according to the pathology’s characteristics [103].

1.3.2. Nervous adaptations

During an eccentric contraction, the electric activity of a muscle is lower than the one recorded during a concentric contraction for the same level of force produced (Section 1.2.2). Eccentric training can increase this neuromuscular activation. Hortobagyi et al. [43] report an EMG activity increase 2.6 times greater after a 6-week quadriceps eccentric training program, compared to a similar concentric training program. Similar results were obtained on elbow flexors [58]. This result can be due:

- to the low-degree of muscle activation, before training, in eccentric mode, compared to other types of contractions (i.e. isometric and concentric);
- to an increased EMG activity in the fibers that are specifically recruited by eccentric exercise.

It seems that type II fibers are more likely to be recruited during eccentric training. We also saw that repeated eccentric
training could lead to a progressive recruitment of slow MUs in order to better distribute mechanical stress to protect muscles from damages. These processes could be the cause of an increased EMG activity of the muscle trained in eccentric mode. The increase in MUs’ discharge frequency could also explain this gain in EMG activity. However, even if the discharge frequency can be increased by training, only 15% of the maximal force is due to a modulation of this parameter in large-size muscles [93]. Recently, some studies have been started in order to better define the origin of these various nervous adaptations through the analysis of the V-wave and H-reflex after an eccentric training phase of the plantar flexors [27]. An increased V-wave could result in an increased number of recruited MUs or an increased frequency of these MUs’ discharge. This increase of the descending signals from the CNS depends also on the efficacy of the nervous transmission at the level of the neuromuscular junction. Duclay et al. [27] highlighted a constant increase of the V-wave during voluntary eccentric contractions, which underlines an improved excitability of motoneurons α or a reduced presynaptic inhibition of la afferents. Strength gains could also be the consequence of a decreased activity of the antagonist muscles (co-activation). On a nervous system level, a lesser co-activation degree could reduce the reciprocal inhibition level and thus facilitate the H-reflex. Nevertheless, eccentric training does not seem to have an impact on the co-activation level, the latter remaining stable from the beginning to the end of the training period in most studies [19,115]. Reciprocal inhibition cannot a priori explain the observed H-reflex changes [27]. However, eccentric training effects on the amplitude of the H-reflex are different in regards to the muscle solicited (i.e. for the soleus and the medial gastrocnemius) suggesting an organization of the muscle-specific reflex arcs. The origin of these different nervous adaptations induced by eccentric training remains to be defined according to the considered muscle group.

1.3.3. Role of eccentric training in rehabilitation

Eccentric training allows for working at high-levels of force with a lower metabolic cost and oxygen uptake. This exercise mode is then relevant for clinicians wanting to include, in their Physical Medicine and Rehabilitation (PM&R) programs, patients that are often intolerant to intense cardiac and respiratory efforts (i.e. patients with heart disorders or lung pathologies). We have just brought up the protective effect of an eccentric training session towards muscle damages. In athletes getting back to a physical activity after an injury, sub-maximal eccentric training is a relevant manner to prepare the musculoskeletal system for getting back to exercise and avoiding the onset of new injuries during this re-training phase. It is also used for therapeutic care in other pathologies such as multiple sclerosis for its positive impact on motor command [108]. Initially suggested by Stanish et al. (1986), chronic eccentric exercise is also proposed for treating tendinopathies, mainly for Achilles’ and patellar tendons. These pathologies represent a large part of Sports Medicine [109] and are a Public Health challenge since they also affect the general population (around 2% of the active population). The Stanish program used a progressive increase of the movement velocity in eccentric contraction and was tested on a cohort of 200 patients. The results showed a complete recovery of the motor function for 44% of them. Inspired by the work Stanish, Alfredson et al. [5] reported that the eccentric mode was an essential therapeutic tool and an integrant part of the results obtained with these PM&R programs.

The physiopathology of the tendon affected, or under treatment, is not completely understood. It seems however that during tendinopathies, the tendon cannot enter into an active recovery cycle [103]. Eccentric exercise could constitute an efficient mechanical stimulus for quiescent tendon cells. Other studies have shown an interruption of the blood flow around tendon cells during eccentric exercise [5]. This process could damage the associated micro-capillaries and nerves, thus reducing the pain sensation. Recently, Langberg and Kongsgaard [63] highlighted an increase in collagen synthesis (type I collagen) main constitutive element of tendon tissue, without increasing the degrading processes, within the injured tendon after 12 weeks of eccentric heavy resistance training. The authors also observed a decrease in pain perceived by the patients. Other studies showed an increase in the blood flow or tendon volume, suggesting an improvement in the intratendinous signal between tissues and interstitial area [117]. These adaptive processes justify the relevance of eccentric training in tendon tissue reinforcement in affected patients. However, few studies have compared these results to the effects induced by concentric exercise. The first comparative studies have shown that force peaks generated in vivo within the tendon during eccentric exercise were similar than during concentric exercise [102,113]. These results show that the therapeutic benefits of eccentric training are not only due to the levels of force induced by this exercise mode. Other authors have suggested that the induced force variations would be a stimulus responsible for tendon remodeling just like results obtained in bone tissues using high-frequency signals [112]. These variations are reflected by the difficulty of the subjects to control movement during an eccentric contraction. Thus, if eccentric training is commonly used for treating tendinopathies, some questions remain, mainly in regards to specific protocols (i.e. contraction type, load, movement velocity) and how to use them according to the characteristics of the various pathologies [63,103]. Finally, it seems that unilateral eccentric training would increase muscles’ strength in the opposite limb, and this in a more noticeable way than after concentric training [40,44]. Implementing eccentric contractions in rehabilitation programs could lead to a functional improvement in muscle groups of the opposite injured limb without it being solicited.

1.4. Comparison of isotonic and isokinetic eccentric training

1.4.1. Specificities of the two modalities of isotonic and isokinetic exercise

1.4.1.1. Isotonic eccentric mode (IT). In vivo, an eccentric IT solicitation opposes a muscular torque to a constant load that can overcome the force capacities production of the subject (i.e.
supra-maximal eccentric training [45]), leading to a lengthening of the muscle-tendon system. In IT eccentric condition, a weight bar or weights, equipments classically used for strength training, most often impose the constant load. If the charge in this type of exercise is fixed, the torque exerted by the subject varies, mainly due to accelerations and decelerations affected to the imposed load, and to the lever arm’s length variations according to the apparatus [4]. This exercise mode is more an isoinertial mechanical solicitation, but classically referred to as “isotonic” in the literature [37]. The angular velocity during this type of movement varies and the recorded levels of mechanical stress are very high (up to 140% of the maximal repetition for trained subjects), mainly in the extreme joint angles (i.e. beginning and end of joint ROM). Thus, an IT eccentric contraction has a first shock-absorbing phase during which the force imposed by the load is greater than muscle force, followed by a phase during which the subject controls the load, up to the extreme angles where load control becomes more difficult. This movement pattern suggests that IT contraction solicits, in a preferential manner, the elastic structures at these extreme angles, the muscle being more solicited at the angles close to peak torque. Eccentric exercise allowing for increasing muscle-joint stiffness, this action mode could then be chosen to increase the stiffness of these elastic structures at these joint angles. However, muscle activation is not at its maximum during the entire ROM, since when reaching the angle at peak torque, the production capacities of the muscle force can sometimes exceed the resistance imposed by the weights [37,46]. Eccentric IT solicitation could then have a moderate impact on nervous adaptation and on strength gain at this joint angle.

1.4.1.2. Isokinetic mode (IK). An IK eccentric contraction is defined by the production of moment-velocity force opposed to the movement of a lever arm mobilized at constant velocity by an active isokinetic dynamometer (movement isokinetics) [54]. This type of apparatus induces a maximal solicitation of the contractile system on the overall ROM [8,59], without major acceleration as it can be the case with IT eccentric contractions. The effects induced on muscle stiffness at the extreme angles could not reach those obtained after IT eccentric training. However, the muscle force produced being at its maximum on the entire joint ROM, the activity of the solicited muscles, is theoretically here also maximal, mainly at the peak torque angle, suggesting more pronounced CNS adaptations with this type of training compared to IT eccentric training. This exercise mode is highly relevant for clinicians who want to propose PM&R programs. Isokinetics can lead to a complete stop of the movement when there is a lack of muscle force production, and impose an adapted resistance to the individual’s capacities offering interesting safety conditions for patients under therapeutic care [21].

1.4.2. Strength gains

In order to compare the results obtained after IT and IK eccentric trainings, strength gains were correlated to the numbers of training sessions performed by the subjects (Tables 1a and 1b). When we compare the mean strength gains induced by the two eccentric modalities, we observe that IT eccentric training increases the force production capacities by 1.1 ± 1.0% per session [10,19,27,46,49–51,69,70,77, 85,90,92,94,98,101,119,122,123,125,126,128] for a mean training duration of 7.5 ± 3.4 weeks (Table 1a), against 0.6 ± 3.0%, for eccentric IK training (mean training duration 10.6 ± 4.9 weeks) [12,30,35,40,35,58,71,75,76,78,83,87,114, 115,118] (Table 1b), meaning that the gain is two times greater in IT mode. Moreover, it would seem that IT solicitations, from this point of view, are more efficient than exercises performed at constant velocity in eccentric conditions. This observation has already been reported in some studies [61] and in a similar evaluation study comparing IT and IK modalities in concentric mode, bringing up average strength gains per session from 0.5 to 1% in IT versus 0.3% in IK [106]. The differences in terms of mechanical stress (torque, movement velocity) imposed by both modalities (IT and IK) according to the joint angle could also be correlated to disparities in induced strength gains. However, if the origin of these strength gains is described for eccentric training in general (Section 1.3), the specific IT and IK modalities induced adaptations are still left to be determined.

1.4.3. Structural adaptations induced by isotonic or isokinetic training

With eccentric training, skeletal muscles are solicited in a maximal and supra-maximal way, their contractile structures adapt when the training lasts longer than 6–7 weeks [95]. Six of the 22 studies selected for this review focused on the evolutions of muscle mass after a phase of IT eccentric training (one study does not report a variation in percentage and thus is not included in the mean average) and seven studies have worked on this parameter following IK eccentric training. IT eccentric training induces a mean muscle hypertrophy of 3.26 ± 3.77% [10,46,51,85,119,126] versus 7.26 ± 4.07% after IK eccentric [12,30,35,40,58,114,118]. Brought down to the number of sessions, the muscle hypertrophy obtained in IT eccentric mode is at 0.10 ± 0.13% versus 0.29 ± 0.17% in IK. The mean duration of these IT protocols is 12 weeks against 10 weeks for IK trainings. Thus, in spite of shorter protocols’ duration, IK eccentric training seems to induce a greater muscle hypertrophy than IT eccentric training. Furthermore, it is interesting to note that the significant gains are obtained in 12 to 20 weeks in IT [119] whereas an increase in muscle mass can be observed in 8 weeks of IK eccentric training [35]. In the same manner, the intensity required to observe muscle hypertrophy in IT must be close to or exceed 100% of the one-repetition maximum (1 RM) if the duration does not exceed 8 to 10 weeks. The fact that the exercise is at its maximal intensity during the entire effort in IK eccentric training seems to promote muscle mass gain. The result, however, does not seem to have an impact on strength gains that are greater after IT eccentric training.

Regarding hypertrophy by muscle fiber types, the synthesis of the different studies shows clearly a hypertrophy of type II muscle fibers in majority, regardless of the mode used (IT or
IK). Only three studies report a hypertrophy of type I muscle fibers (from +0.62 to +0.86% per session) associated to a hypertrophy of fast-twitch muscle fibers after eccentric training [52,87,92]. The scarce number of studies on this topic does not permit us to conclude to the superiority of one training mode over another to trigger a hypertrophy on a preferential type of muscle fibers. Regarding changes in muscle fiber typology, IT and IK modes induce a decrease in the number of type I and IIb muscle fibers with an increase in the proportion of type IIA/IIb fibers [12,43,87,101,114,118,126].

Very few studies have investigated the effect of eccentric training on mechanical properties. In fact, no study ever focused on the evolutions of the mechanical properties following a phase of IK eccentric training. However, studies conducted on IT mode showed an increased stiffness of the serial elastic component due to an increased collagen synthesis [98], and a decreased muscle stiffness due to an increased fascicles’ length, characterized in passive conditions after IT eccentric training [68]. Tendon stiffness tends to increase after this type of training. However, these results still need to be validated and compared to the IK mode. Finally, to our knowledge, only one study researched the impact on IK eccentric training on muscle architecture [12], which does not allow us to establish a comparison with IT eccentric training. The results have shown an increase of the pennation angle (+21.4%) and fascicles’ length (+3.1%) after a 10-week IK eccentric training program.

1.4.4. Nervous adaptations following isotonic or isokinetic training

All studies focusing on nervous adaptations induced by eccentric training show an increase in the neuromuscular activation of the trained muscle groups. In this light, it is interesting to note that muscle activation gains are higher after IT eccentric training (+1.80 ± 1.54% per session) [19,27,92,125], compared to IK eccentric training (+0.43 ± 0.17% per session) [40,43,58,115]. In the same manner, a study showed a significant increase of the maximal voluntary activation (+17%) [92], a parameter which, to our knowledge, has not been studied on the IK mode. Finally, this same study reported a reduced muscular co-activation (−22 to −29% compared to the initial co-activation level) after a phase of IT eccentric training [92] whereas no significant evolution has been highlighted after IK training [12].

Thus, IT eccentric training seems more prone to adaptation of the nervous command of the solicited muscles. It does not allow us to validate the hypothesis formulated according to which IK training might be more efficient on this level due to the higher peak torque that this mode can reach (Section 1.4.1.1). However, the selected parameter (i.e. mean activation

Table 1a

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Author</th>
<th>Wks x Fq</th>
<th>Volume</th>
<th>Intensity (%1RM)</th>
<th>Strength gains obtained for each velocity type test (per session)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee extensors</td>
<td>Ben-Sira et al. [10]</td>
<td>8 x 2</td>
<td>10 x 3</td>
<td>65–85</td>
<td><90°.s⁻¹ ns <90°.s⁻¹ 0°.s⁻¹ <90°.s⁻¹ 90°.s⁻¹ <68 ns ns <77 6 <52 4 <69 4 <101 4 <94 8 <90 6 <51,52 12 <44 5 <70 4 <69 4 <13 4 <92 1 <78 2–3 6 <62 2–3 3 <52 1–3 2–3 3 <10 80 5 <10 100–110 - <150 150 - <100 100 - <120 120 - <120 120 - <150 150 - <80 80 - <100 100 - <83 83–95 - <120 120 - <120 120 - <120 120 - <120 120 -</td>
</tr>
</tbody>
</table>
Strength gains induced by isokinetic (IK) eccentric training.

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Authors</th>
<th>Wks × Fq</th>
<th>Volume</th>
<th>Strength gains obtained for each velocity type test (per session)</th>
<th>Study characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee extensors</td>
<td>Blazevich et al. [12]</td>
<td>10 × 3</td>
<td>4–6 × 6</td>
<td>30 +1.3 +0.5 -</td>
<td>Strength gains obtained after isotonic eccentric training (IT, Table 1a) and isokinetic (IK, Table 1b) eccentric training for each type of velocity used: eccentric with movement angular velocity greater than 90°.s⁻¹ (−90°.s⁻¹), eccentric with movement angular velocity lower than 90°.s⁻¹ (−90°.s⁻¹), concentric with movement angular velocity greater than 90°.s⁻¹ (−90°.s⁻¹) and concentric at movement angular velocity greater than 90°.s⁻¹ (−90°.s⁻¹). Strength gains are expressed in percentage of the pre-training value and brought back to the total number of sessions performed during the training period. The significant evolutions are highlighted in bold. When several test velocities were used in each of the types, the listed value represents the mean of the obtained strength gains for all the tested velocities. Wks : weeks ; Fq : frequency (number of sessions per week of training); 1 RM : maximal load that the subject can lift in one repetition ; Volume : number of series × number of repetitions ; (P < 0.05).</td>
</tr>
<tr>
<td></td>
<td>Duncan [30]</td>
<td>6 × 3</td>
<td>1 × 10</td>
<td>120 +1.5 +0.2 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higbie et al. [40]</td>
<td>10 × 3</td>
<td>3 × 10</td>
<td>60 +0.1 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hortobagyi et al. [43]</td>
<td>12 × 3</td>
<td>4–6 × 8–12</td>
<td>60 +3.2 +1.3 +0.1 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mayhew et al. [71]</td>
<td>4 × 3</td>
<td>5 × 10</td>
<td>60 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miller et al. [76]</td>
<td>20 × 3</td>
<td>1–5 × 6</td>
<td>60 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seger et al. [114]</td>
<td>10 × 3</td>
<td>4 × 10</td>
<td>90 +0.3 +1.1 +0.3 +0.2 +0.1 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seger and Thorstensson [115]</td>
<td>10 × 3</td>
<td>4 × 10</td>
<td>90 +0.0 +0.9 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melo et al. [75]</td>
<td>12 × 2</td>
<td>2–4 × 12</td>
<td>60 -</td>
<td></td>
</tr>
<tr>
<td>Knee flexors and extensors</td>
<td>Nickols-Richardson et al. [83]</td>
<td>20 × 3</td>
<td>1–5 × 6</td>
<td>60 -</td>
<td></td>
</tr>
<tr>
<td>Knee flexors</td>
<td>Melo et al. [75]</td>
<td>12 × 2</td>
<td>2–4 × 12</td>
<td>60 -</td>
<td></td>
</tr>
<tr>
<td>Elbow extensors</td>
<td>Farthing and Chilibeck [35]</td>
<td>8 × 3</td>
<td>2–6 × 8</td>
<td>180 +0.7 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Komi and Buskirk [58]</td>
<td>7 × 4</td>
<td>1 × 6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paddon-Jones et al. [87]</td>
<td>10 × 3</td>
<td>4 × 6</td>
<td>180 +0.9 +1.0 +0.7 +1.0 +1.0 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shephstine et al. [118]</td>
<td>8 × 3</td>
<td>1–4 × 10</td>
<td>210 +0.7 +0.2 -</td>
<td></td>
</tr>
<tr>
<td>Elbow flexors and extensors</td>
<td>Nickols-Richardson et al. [83]</td>
<td>20 × 3</td>
<td>1–5 × 6</td>
<td>60 -</td>
<td></td>
</tr>
<tr>
<td>Shoulder cuff rotators</td>
<td>Mont et al. [78]</td>
<td>6 × 3</td>
<td>8 × 10</td>
<td>90–180 +0.8 +0.5e +0.1e +0.5e -</td>
<td></td>
</tr>
</tbody>
</table>

1.5. Conclusion

Eccentric exercise is an efficient mean to induce major structural changes on the muscle-tendon system and adaptations of the nervous central command. These adaptations allow for a significant increase of the maximal force production capacities, often higher to those obtained with concentric or isometric trainings. A comparative synthesis of the adaptive processes induced by these two solicitation modes classically used in eccentric training, enabled to highlight the superiority of IT mode compared to IK mode regarding strength gains obtained. This can be explained by greater changes in the nervous command following this type of training. Conversely, IK eccentric training seems to promote muscle hypertrophy. The adaptive (structural and nervous) mechanisms still remain to be defined because studies on these two modes (IT, IK) remain quite rare. The synthesis of the studies found in the literature and reported in this review allowed for identifying differences in the adaptive process induced by IT and IK eccentric trainings (i.e. greater muscle hypertrophy after IK training, greater increase in neuromuscular activation after IT eccentric training). However, the effects of IT and IK eccentric training have not, to this day, been compared in standardized settings. Such studies could better define the relevance of their use on the overall ROM, activation at peak torque) to assess the evolution of the neuromuscular activation varies according to the studies, which can influence the results obtained. These results could explain in part greater strength gains obtained via IT eccentric training (Section 1.4.2).
use in strength training or PM&R setting, according to the targeted adaptive goals.

2. Version française

2.1. Introduction

Une contraction musculaire est dite excentrique lorsque la contrainte mécanique imposée (i.e. moment résistant) à un muscle ou à un groupe musculaire est supérieure à la force produite par l’ensemble des unités motrices activées (i.e. moment moteur) [32]. L’allongement forcée du complexe muscle-tendon qui accompagne alors la production de force est désigné sous le terme de *lengthening contraction* en opposition au régime de contraction concentrée (*shortening contraction*). Au cours de ce processus, le muscle absorbe l’énergie développée par une charge externe, ce qui vaut au travail excentrique l’appellation de « travail négatif » [3], soulignant ainsi son rôle frénateur. L’énergie absorbée peut être :

- dissipée sous forme de chaleur, auquel cas le muscle fonctionne tel un amortisseur (e.g. descente d’escaliers, ralentissement en bout de course) ;
- stockée temporairement en énergie potentielle élastique pouvant ensuite être restituée (e.g. locomotion, sauts avec prise d’élan) [24].

Ces observations ont amené plusieurs auteurs à comparer le comportement du muscle et de ses tendons à celui d’un ressort qui emmagasine et restitue de l’énergie, de manière cyclique [105].

Lors d’une contraction excentrique, les composantes élastiques du complexe musculo-tendineux contribuent ainsi au couple de force externe produit. Ce dernier est plus élevé que celui développé en concentré pour une vitesse angulaire donnée [41]. L’allongement musculaire forcés associé à ces tensions importantes provoque une dégradation du cytosquelette et une inflammation localisée responsable de douleurs musculaires à effet retardé communément appelées delayed onset muscular soreness (DOMS) [65]. Afin de protéger le système musculosquelettique de ces dommages, des mécanismes d’inhibition sont mis en place par le système nerveux. Cette réponse spécifique du système neuromusculaire en condition excentrique a amené de nombreux auteurs à s’intéresser aux effets chroniques de l’exercice excentrique dans le cadre de l’entraînement [110] et de la rééducation [103]. Ce régime de contraction intéresse directement ces deux champs d’application car il va permettre de solliciter l’appareil contractile de manière maximale et supra-maximale, induisant ainsi des gains de force importants, mais aussi de renforcer le complexe musculo-tendineux en stimulant la synthèse de collagène [91] et en activant les gènes du développement et de la croissance cellulaire [49].

L’exercice excentrique est classiquement réalisé à vitesse constante (isocinétique [IK]) ou contre une charge externe constante (isotonique [IT]), induisant des contraintes mécaniques différentes selon le cas, ce qui devrait engendrer des adaptations neuromusculaires et musculo-tendineuses spécifiques. Cette revue de littérature se propse donc d’exposer d’abord les caractéristiques de la contraction excentrique au niveau nerveux, mécanique et structural, avant de rendre compte des adaptations induites par l’entraînement excentrique sur ces différents facteurs. Les gains de force et les processus adaptatifs induits par les différents protocoles d’entraînement ayant mobilisé l’exercice excentrique IT ou IK sont finalement présentés et comparés dans une synthèse visant à déterminer l’intérêt spécifique de l’emploi de ces deux modes d’exercice dans l’amélioration des qualités musculaires.

2.2. Propriétés du régime de contraction excentrique

2.2.1. Couple de force externe

Lors d’une contraction musculaire excentrique, la contrainte mécanique externe appliquée au segment mobilisé provoque l’étirement des composantes élastiques du système musculo-tendineux impliquées qui, en retour, restituent de l’énergie productrice d’une force additionnelle à la force produite par les fibres musculaires recrutées. En conséquence, ce mode de contraction mobilise une moindre énergie métabolique pour une même production de force qu’en mode concentré [3]. Ainsi, le couple de force maximal développé par un groupe musculaire lors d’actions excentriques est supérieur au couple de force produit en contraction isométrique et concentrée (pour une vitesse angulaire donnée), atteignant 100 à 180 % de la force maximale isométrique selon les études [54]. Toutefois, certains travaux ne rapportent pas de différences significatives entre les couples de force maximaux excentrique et isométrique. Il existe des divergences concernant l’allure de la relation entre le couple de force et la vitesse de mouvement (« force–vitesse ») établie à l’aide d’ergomètres isocinétiques, lors de sollicitations excentriques. La plupart des études s’accordent néanmoins sur le fait que le couple de force excentrique maximal ne dépend pas de la vitesse de mouvement (Fig. 1) [54]. Toutefois, l’allure de la relation « force–vitesse »

![Fig. 1. Évolution du couple de force normalisé par rapport à la force maximale volontaire isométrique en fonction de la vitesse angulaire de mouvement selon plusieurs études ayant caractérisé la relation « force–vitesse ». MVC : contraction isométrique maximale; ▲ Webber & Kriellaars, 1997 [127]; ● Westing et al., 1998 [129]; △ Komi et al., 2000 [59]; ○ Dudley, 1990 [28]; ◇ Colson et al., 1999 [19].](image-url)
serait dépendante du sexe, de l’âge ou encore du niveau de force des sujets [18].

2.2.2. Stratégies d’activation musculaire

Lors de sollicitations musculaires excentriques, le système nerveux met en place des stratégies d’activation centrale spécifiques à ce mode d’action. En effet des mesures électroencéphalographiques indiquent une activité corticale plus importante et plus précoce lors de contractions excentriques sous-maximales et maximales des fléchisseurs de l’avant-bras [34], ce qui suggère une programmation des contractions excentriques différente des contractions concentriques, au niveau du système nerveux central. L’activité électromyographique (EMG) mesurée à la surface de la peau, lors d’actions musculaires excentriques maximales, est par ailleurs inférieure à celle enregistrée en concentrique, pour une vitesse angulaire donnée [158,67,130]. Le système nerveux central semble ainsi dans l’incapacité de recruter de façon maximale toutes les UMs d’un muscle lors d’une contraction excentrique [42,73], et cela est plus marqué à des vitesses angulaires élevées [55]. Cette réduction du signal EMG pourrait être le résultat d’une diminution de la fréquence de décharge [120] ou d’un recrutement d’UMs moins important en excentrique, induisant la répartition du stress mécanique sur un plus faible nombre d’UMs [7,82]. La tension unitaire par fibre musculaire active est donc plus élevée en mode excentrique, ce qui participe à la réduction du coût énergétique mais aussi à la survenue des dommages musculaires au niveau des fibres sollicitées [82]. Ces observations ont été confirmées par les résultats obtenus par la technique de stimulation électrique surimposée (twitch interpolation), qui ont mis en évidence un degré d’inhibition musculaire agoniste compris entre 5 et 30% selon les études, lors de contractions excentriques [6,8,28,129] contre 4 à 21% en régime concentrique [107]. Certaines hypothèses ont été proposées pour expliquer les mécanismes responsables de cette limitation de l’activation musculaire. Les afférences Ib issues de l’organe tendineux de Golgi (sensible à la tension musculaire) peuvent, par exemple, avoir une action inhibitrice sur l’activité des motoneurones α. Néanmoins, l’influence des organes tendineux de Golgi ne semble pas être le mécanisme majeur permettant d’expliquer cette diminution de l’activation en contraction excentrique [96]. La commande efférente peut également être modulée par les afférences Ia et II, issues des fuseaux neuromusculaires qui renseignent le système nerveux sur la longueur (sensibilité statique) et les variations de longueur (sensibilité dynamique) du muscle. Les récepteurs sensoriels périphériques exercent ainsi une rétroaction accrue sur les motoneurones α lors de contractions excentriques, qui semble être annulée par l’inhibition présynaptique centrale et périphérique des afférences Ia, comme le montre les travaux portant sur le réflexe de Hoffman (ou réflexe H) en conditions dynamiques [25,26]. Le réflexe H est une composante du réflexe d’étirement qui se caractérise par la réponse électromyographique enregistrée lors d’une contraction musculaire provoquée par une stimulation électrique sous-maximale du nerf moteur. Ce réflexe est le résultat de l’activation des motoneurones α via les afférences Ia provenant des fuseaux neuromusculaires. L’amplitude du réflexe H est liée au nombre de motoneurones activés et reflète ainsi l’excitabilité de ce pool motoneuronal et la transmission synaptique des afférences Ia. Il constitue un outil permettant d’évaluer une modulation de l’activité réflexe monosynaptique. Lors de contractions sous-maximales excentriques, ce réflexe H est plus faible que lors de contractions concentriques, suggérant l’existence d’une inhibition pré-synaptique des afférences Ia [26,84,111]. Ce processus peut aussi expliquer l’activation limitée qui est observée en contraction excentrique.

Les mécanismes qui mettent en évidence une activation musculaire spécifique lors de contractions excentriques [32] impliquent des modulations du recrutement et de la fréquence de décharge des UMs. Tandis que certaines études rapportent qu’une contraction excentrique est associée à une activation sélective d’UMs à seuil de recrutement élevé [48,67,81], d’autres travaux montrent un ordre de recrutement suivant le principe de la taille [38], pour les contractions concentriques et excentriques [23,89,120,124]. Si Stotz et Bawa [124] ont observé le recrutement d’UMs à seuil de recrutement élevé lors de contractions excentriques, cela n’a été obtenu que pour des profils de force ou de mouvement variables et non contrôlés. Ces données suggèrent qu’une modification du recrutement en contraction excentrique peut être observée ponctuellement sans que cela témoigne d’un recrutement préférentiel d’UMs rapides.

Une contraction volontaire des muscles agonistes est associée à une activation des muscles antagonistes (ou co-activation), qui peut également être quantifiée par électromyographie de surface [33,121]. Le couple de force externe est alors le résultat du couple de force produit par les muscles agonistes, soustrait du couple de force généré par les muscles antagonistes. Les résultats concernant l’influence du mode de contraction sur le niveau de co-activation divergent. Celui-ci pourrait être plus important lors de contractions musculaires excentriques (12% en excentrique versus 7% en concentrique pour les muscles fléchisseurs plantaires) [96] ou concentriques (37 à 48% en concentrique versus 25 à 30% en excentrique ; muscles extenseurs du genou) [56], alors que d’autres travaux montrent des valeurs de co-activation similaires quel que soit le type de sollicitation musculaire [6,99]. Un tel mécanisme diminue les niveaux de couple de force développés et permet de stabiliser l’articulation vis-à-vis des tensions élevées induites par les sollicitations excentriques.

2.2.3. Comportement des structures musculaires

Le niveau de pré-activation précédant une contraction musculaire excentrique aurait un effet sur l’évolution de la longueur des fascicules musculaires. Des études in vitro sur des fibres isolées suggèrent que le développement d’une force isométrique est nécessaire avant tout changement de longueur afin d’assurer une pré-activation complète des UMs [31]. Lors de contractions excentriques, l’angle de pénumation du tibialis anterior est indépendant de la vitesse angulaire de mouvement [104]. Toutefois, pour des niveaux de vitesse angulaire élevés, l’angle de pénumation mesuré en contraction excentrique est plus important et la longueur des fascicules plus faible par rapport à
une contraction concentrique, induisant une épaisseur musculaire plus importante en excentrique. Néanmoins, le comportement mécanique des fascicules et du tendon pourrait être également lié à la modalité, à l’intensité de l’exercice excentrique, aux muscles et aux systèmes articulaires considérés [104]. L’ensemble des études confirme toutefois l’importante contribution des tissus tendineux à l’allongement du complexe muscle-tendon, estimée à 45 % pour le gastrocnemius medialis [16], même s’il existe de fortes variations inter-individuelles. Les différentes évolutions de la longueur fasciculaire au cours de la contraction (i.e. raccourcissement, allongement ou longueur constante) seraient liées au type d’exercice réalisé, qui influencerait l’étirement des composantes élastiques et optimiserait l’efficacité du cycle étirement–déétente. L’énergie alors restituée par les composantes élastiques en mode excentrique produit une force additionnelle sans consommation d’ATP. Ce processus, associé à un recrutement limité d’UMs, permet une économie de l’énergie métabolique totale utilisée par le muscle [3]. Les actions excentriques produisent ainsi des forces plus élevées tout en consommant moins d’oxygène et d’énergie qu’une session équivalente de travail concentrique [88].

Le stockage d’énergie réside dans les propriétés élastiques du tendon et du muscle, qui permettent l’allongement de ces structures en réponse à l’étirement. Le tendon possède un comportement viscoélastique qui résulte de sa composition, riche en collagène (86 % de la masse du tissu organique), et des interactions existant entre les protéines collagéniques et non-collagéniques (i.e. protéoglycannes). L’élasticité du muscle est due, quant à elle, aux interactions actine–myosine, au tissu conjonctif extracellulaire et au système élastique de filaments structurant les sarcomères des cellules musculaires. Ce complexe élastique est par exemple composé d’une protéine géante, la titine (aussi appelée connectine) et de la desmine, qui remplissent la fonction de ressort lorsque le muscle est soumis à une sollicitation excentrique [66].

Les propriétés viscoélastiques du tendon le rendent plus déformable que le muscle à de faibles niveaux d’étirements. Dans ces conditions, les tendons peuvent absorber plus d’énergie mais sont moins efficaces dans la transmission des forces. À des niveaux de tension plus élevés, ils deviennent moins déformables et plus raides, permettant alors de déplacer des charges plus importantes. Ces éléments pourraient expliquer que lors de sollicitations excentriques, la longueur des fascicules musculaires du gastrocnemius medialis reste constante alors que les fascicules musculaires du vastus lateralis s’allongent, car soumis à des contraintes mécaniques plus importantes.

2.2.4. Dommages musculaires

Le régime excentrique permet d’imposer au système musculo-tendineux une contrainte mécanique élevée ou dite « supra-maximale ». Les hauts niveaux de tensions qui accompagnent l’allongement forcé de ce complexe peuvent entraîner des microlésions des fibres musculaires [20]. Au niveau cellulaire, ces dommages se caractérisent par une désorganisation de certains sarcomères et une perturbation de l’orientation linéaire de la ligne Z (i.e. aspect « distordu » [65]), associées à des lésions au niveau du sarcolemme, des tubules transverses et du reticulum sarcoplasmique [65]. Ces microlésions sont succédées d’un processus inflammatoire responsable de l’apparition progressive de douleurs musculaires à effet retardé ou delayed onset muscular soreness (DOMS). L’exercice excentrique est le principal initiateur de ces douleurs communément appelées « courbatures ». Elles surviennent dans les 12 à 48 heures qui suivent un exercice excentrique intense ou inhabituel et connaissent un pic entre 24 et 72 heures avant de disparaître progressivement en cinq à sept jours. Les DOMS sont accompagnés d’une diminution des capacités de production de force (–10 à –60 % sur la force maximale volontaire isométrique, selon les études [74,80]), qui sont restaurées en une semaine environ. L’impact des dommages musculaires lors d’une seconde session d’exercice excentrique est cependant réduit par rapport à la première séance (i.e. effet protecteur, Section 2.3.1.1) [74].

De nombreux auteurs ont cherché à savoir si les dommages induits par l’exercice excentrique touchaient de manière préférentielle un type de fibre particulier. Les résultats de plusieurs études, obtenus chez l’homme et l’animal, tendent à prouver que l’exercice excentrique intense engendre des lésions principalement au niveau des fibres de type II (II b en particulier) [36]. Cela peut en partie être expliqué par le recrutement préférentiel d’UMs rapides en régime excentrique.

Les processus physiologiques de régénération cellulaire qui succèdent à ces microlésions sont impliqués dans l’hypertrophie musculaire et sont donc nécessaires pour optimiser la réponse à l’entraînement (Section 2.3.1.3). La mise en place de contractions musculaires excentriques dans les programmes de renforcement musculaire, si elle nécessite certaines précautions, reste donc un moyen intéressant pour améliorer les qualités de force musculaire et permet, tout en affectant la commande motrice, d’induire en retour des processus adaptatifs sur le plan structural.

2.3. Adaptations induites par un entraînement excentrique

2.3.1. Adaptations structurales

2.3.1.1. Effet de répétition de session ou « repeated bout effect ». De nombreuses études ont montré que la réalisation d’une première séance d’exercice excentrique a pour effet de limiter fortement les DOMS perçus à la suite d’une seconde session d’exercice excentrique, réalisée classiquement à une semaine d’intervalles. Ce phénomène est appelé « effet de répétition » (repeated bout effect [74]). Cette première adaptation se caractérise par une réduction des microlésions musculaires, du relargage de créatine kinase (CK) et des chaînes lourdes de myosine, de la perte de force et des DOMS après une seconde séance d’exercice excentrique, par rapport à la première session réalisée quelques jours plus tôt. La durée de ce phénomène adaptatif varie de quelques semaines à six mois en fonction des études. Selon Chen et al. [14], l’importance des DOMS et du niveau de CK plasmatique après la première session d’exercice excentrique influence le degré de l’effet de répétition. Ainsi, il est possible que le niveau de sensibilité du
sujet à l’exercice excentrique conditionne l’importance de cet effet protecteur qui peut parfois ne pas être observé [100]. Dans une revue récente, Lieber et Friden [65] évoquent également le haut degré de spécificité de l’effet de répétition, qui n’est valable que lorsque les deux sessions excentriques sont identiques.

Les adaptations pouvant potentiellement expliquer l’effet de répétition sont d’origine nerveuse, mécanique ou cellulaire. En raison de la rapidité de ce type d’adaptation, certains auteurs ont suggéré que l’exercice excentrique pouvait améliorer la synchronisation des UMs et accroître leur degré d’activité [74]. Ce processus permettrait d’augmenter le nombre de fibres sollicitées par rapport à la première session, notamment en recrutant un plus grand nombre d’UMs lentes, entraînant une meilleure répartition du stress mécanique sur l’ensemble des fibres musculaires activées et limitant ainsi les ruptures des myofibrilles [22,82]. L’origine mécanique des lésions induites par l’exercice excentrique a amené certains auteurs à proposer que des modifications des propriétés mécaniques du système musculosquelettique protégeraient le muscle vis-à-vis des dommages. Certaines études ont en effet rapporté une augmentation de la raideur active ou passive du complexe muscle-tendon après un exercice excentrique [98]. Ces adaptations ont été respectivement attribuées à une réorganisation des protéines du cytosquelette responsables de l’alignement et de la structure des sarcomères (i.e. titine, desmine) et à une augmentation de la quantité de tissu conjonctif présente dans le muscle, permettant une meilleure dissipation de la contrainte mécanique en excentrique [64]. Toutefois, des études montrent également que des muscles plus raides sont plus susceptibles de subir des dommages [72]. En effet, des travaux portant sur des modèles « murins » ne possédant pas de desmine ont montré que ces souris étaient moins exposées aux dommages que des souris saines suite à un exercice excentrique. Ce résultat a été attribué à une compliance plus importante des muscles de ces souris, limitant ainsi le nombre de sarcomères susceptibles d’être lésés. La dernière hypothèse avancée pour expliquer l’effet de répétition est l’influence de facteurs cellulaires, selon laquelle l’exercice excentrique entraîne une augmentation du nombre de sarcomères en série et modifierait la réponse inflammatoire. L’addition de sarcomères en série, montrée chez l’animal [79] et récemment de manière indirecte chez l’homme [13], permettrait de réduire l’étirement et donc la rupture des sarcomères après une session excentrique. Une réduction de l’inflammation après un exercice excentrique répété a également été caractérisée par une diminution de l’activation des monocytes et des neutrophiles participant à la réponse inflammatoire [97]. Cette réponse inflammatoire réduite contribue à l’effet protecteur même s’il est difficile de savoir si cette adaptation est la cause ou la conséquence d’une diminution du nombre de myofibrilles lésées, ou encore si l’effet de répétition est une combinaison de ces deux processus [74].

2.3.1.2. Gains de force. Selon plusieurs études, l’entraînement excentrique semble être un moyen efficace pour augmenter les capacités de production de force maximale, notamment par rapport à un entraînement concentrique (voir Remaud et al. [107] pour une revue détaillée). Par exemple, Hortobagyi et al. [43] rapportent un gain de force isométrique volontaire maximale 3,5 fois plus important après six semaines d’entraînement excentrique des extenseurs du genou en comparaison d’un entraînement concentrique de même durée. Ces résultats ont été confirmés avec des durées d’entraînement plus longues (+24,6 % de la force initiale après entraînement excentrique versus +12,5 % après entraînement concentrique) pour les fléchisseurs et extenseurs du coude [83]. Les études s’étant intéressées aux effets d’un entraînement utilisant une surcharge (100 à 120 % de la répétition maximale) lors de la phase excentrique (overloading) ont mis en évidence des gains de force plus importants qu’a un entraînement en force utilisant des charges inférieures [45]. Ainsi, il semble que la composante excentrique d’un protocole d’entraînement soit essentielle pour augmenter la force musculaire. En effet, l’appareil contractile est sollicité au maximum, grâce aux hauts niveaux de couple de force atteints en excentrique. Les gains de force ainsi obtenus par rapport aux capacités de production de force initiales s’échelonnent de 1 à 116 % pour la force excentrique, de 1 à 67 % pour la force concentrique et de 7 à 45 % pour la force isométrique [43,86]. Si de nombreux auteurs restent attachés au principe de spécificité des gains de force en fonction du mode d’entraînement [30], il apparaît que l’entraînement excentrique soit le moyen le plus efficace d’améliorer la force maximale concentrique d’un groupe musculaire [52]. Enfin, les gains de force induits par l’entraînement excentrique semblent très spécifiques de la vitesse de mouvement utilisée [110].

2.3.1.3. Hypertrophie. Un des processus adaptatifs importants induit par l’entraînement excentrique est le gain de masse musculaire (i.e. hypertrophie), qui représente un des facteurs déterminants des capacités de production de force. Au-delà de six à huit semaines d’entraînement, l’amélioration des capacités de production de force musculaire s’accompagne d’une augmentation de la masse musculaire. La composante excentrique d’un entraînement est alors essentielle pour induire l’augmentation de la surface de section transversale des fibres musculaires [29]. Les programmes incluant des actions excentriques engendrent ainsi des gains de masse musculaire plus importants que les entraînements visant cet objectif sur le mode concentrique [35,58]. Higbie et al. [40] ont par exemple montré une augmentation plus importante de la surface de section transversale (CSA) du quadriceps après dix semaines d’entraînement excentrique par rapport à un entraînement équivalent réalisé en régime concentrique. Des résultats similaires ont été obtenus sur les fléchisseurs du coude [35]. Ces résultats ont récemment amené de nombreux chercheurs à s’intéresser aux effets de l’entraînement excentrique sur l’expression génique des cellules musculaires sollicitées. En effet, l’exercice excentrique représente, pour les cellules musculaires, une contrainte mécanique particulière qui peut modifier l’expression de plusieurs gènes [39,57], via les voies de mécanotransduction constituées de protéines sensibles au statut mécanique de la cellule musculaire (e.g. microtubules-
associated proteins ou protéines MAP). Une séance excentrique déclenche, à partir de six heures post-effort, l’activation progressive des gènes de la croissance cellulaire et du développement, impliqués dans les processus d’hypertrophie cellulaire chez l’homme. L’expression de ces gènes est d’avantage stimulée par les actions excentriques que par des actions isométriques ou concentriques [9,15,60]. L’introduction d’exercice excentrique lors des périodes d’entraînement dites « d’hypertrophie » semble donc être un moyen efficace pour optimiser la prise de masse musculaire.

2.3.1.4. Modifications typologiques. Les modifications typologiques induites par l’entraînement excentrique sont similaires à celles induites par les autres programmes d’entraînement en force, c’est-à-dire une augmentation de la part de fibres musculaires de type intermédiaire (IIa, IIa/IIb) pouvant atteindre +12 % [43], avec parfois une diminution du nombre de fibres de type IIb [118]. Cependant ces évolutions restent modérées, voire ne sont pas statistiquement significatives dans la plupart des études. Elles ne semblent donc pas constituer l’adaptation principale pouvant expliquer les gains de force observés après un entraînement excentrique.

En ce qui concerne la longueur des fascicules musculaires, si certains protocoles d’entraînement n’ont pas montré de modification de ce paramètre après un entraînement en force [12], d’autres protocoles utilisant l’overloading [116] ou des vitesses élevées sur le mode pliométrique [11] ont induit une augmentation de la longueur des fascicules musculaires (addition de sarcomes en série). À notre connaissance, une seule étude a étudié l’effet de l’entraînement purement excentrique sur l’architecture musculaire. Les auteurs ont mis en évidence une augmentation de 3,1 % de la longueur des fascicules du vastus lateralis après un entraînement excentrique contre 6,3 % pour un entraînement concentrique de même durée sans différence significative entre les deux modes d’entraînements [12]. Les auteurs ont suggéré que l’amplitude de mouvement, plus que le mode de contraction ou la vitesse de mouvement, constitue le facteur ayant l’effet le plus important sur les modifications de longueur des fascicules musculaires. L’augmentation de la longueur des fascicules musculaires permet également d’accroître la vitesse de contraction musculaire [12]. Ainsi, l’entraînement excentrique constitue un procédé efficace pour améliorer non seulement les capacités de production de force, mais aussi les qualités de puissance musculaire (i.e. produit de la force et de la vitesse de contraction musculaires), essentielles dans la plupart des activités physiques et sportives.

2.3.1.6. Modifications des propriétés mécaniques. Classiquement, la réalisation d’une séance d’exercice excentrique est suivie d’une augmentation de la raideur musculo-articulaire passive [47]. Celle-ci peut être multipliée par deux et reste élevée pendant les quatre jours suivant l’exercice excentrique. Cette augmentation de la raideur passive peut potentiellement s’expliquer par la formation de ponts actine-myosine résiduels [62] résultats d’une augmentation de la concentration calcique au repos dans les fibres musculaires, elle-même liée à la rupture des membranes des cellules musculaires. D’autres processus ont été proposés pour expliquer cette augmentation de la raideur passive tel que l’œdème caractérisé par un gonflement musculaire qui comprime les tissus et engendre une résistance douloureuse à l’extension passive augmentant ainsi la « sensa- tion de raideur » [17]. Enfin, il est possible que les processus de réparation induisent une augmentation permanente de la raideur passive en raison du remodelage du tissu conjonctif comme suggéré par Lapier et al. [64].

Lorsque l’exercice excentrique est répété et prolongé (i.e. entraînement), la raideur musculo-articulaire caractérisée en condition passive diminue. Mahieu et al. [68] ont mis en évidence une augmentation de l’amplitude articulaire de mouvement et une diminution de 23 % du couple de force résistant passif après six semaines d’entraînement excentrique des fléchisseurs plantaires. Antérieurement, Morgan [79] avait déjà montré une augmentation du nombre de sarcomères en série dans les fibres musculaires (+11 %), après une semaine de course en descente sur tapis roulant. Ces résultats sont en accord avec des études récentes mettant en évidence une modification de la relation entre le couple de force maximal développé et l’angle articulaire avec un déplacement du pic de couple de force (shift d’environ 15°) vers les longueurs musculaires plus grandes immédiatement après un exercice excentrique [131]. Cette modification de la longueur muscu-
laire permettant la production du couple de force maximal est un indicateur de l’augmentation de la compliance musculaire post-exercice excentrique. Cette adaptation induite par l’entraînement excentrique permet d’envisager des applications du point de vue de la prévention des blessures. En effet, la diminution de la raideur passive du muscle permet un transfert d’une partie de la contrainte mécanique du tendon vers le muscle, réduisant ainsi les risques de lésion tendineuse.

En revanche, la raideur de la composante élastique en série (CES), composée des structures musculaires élastiques et du tendon, augmente après un entraînement excentrique. Pousson et al. [98] ont en effet montré une augmentation de ce paramètre après six semaines d’entraînement excentrique des muscles fléchisseurs du bras, à 30 et 45 % de la force maximale volontaire isométrique (MVC). Cette augmentation n’est cependant pas confirmée à des niveaux de force plus élevés (60 et 80 % de MVC). Ces résultats sont partiellement confirmés par les travaux de Mahieu et al. [68] qui ont déterminé une tendance à l’augmentation de 9,5 % de la raideur du tendon d’Achille mesurée en conditions actives après six semaines d’entraînement excentrique des fléchisseurs plantaires. L’augmentation de la raideur de la CES peut donc s’expliquer par une augmentation de la raideur du tendon. Elle pourrait également être le résultat d’une augmentation de la raideur des ponts d’actine–myosine ou d’un remodelage des protéines du cytosquelette responsables de l’alignement des sarcomères, telle que la desmine ou la titine. La réorganisation de ces protéines succédant aux microlésions induites par les sollicitations excentriques pourrait être un processus responsable de l’augmentation de la raideur de la composante élastique du muscle. Ces modifications des propriétés élastiques peuvent ainsi favoriser la restitution d’énergie mécanique, notamment lors de cycles d’étirement–détente.

Par ailleurs, l’exercice excentrique chronique est souvent proposé dans le traitement des tendinopathies pour son effet stimulant sur la synthèse de collagène, principal élément constitutif du tissu tendineux et conjonctif [91]. Plusieurs études ont également montré une augmentation du flux sanguin en périphérie des cellules tendineuses après exercice excentrique [5,63]. Ces processus adaptatifs justifieraient l’intérêt de l’exercice excentrique dans le renforcement des tissus tendineux chez les patients souffrant de tendinopathies. Toutefois certaines questions demeurent, notamment quant aux protocoles spécifiques (e.g. charge, vitesse de mouvement) à utiliser en fonction des caractéristiques de la pathologie [103].

2.3.2. Adaptations nerveuses

L’activité électrique d’un muscle effectuant une contraction excentrique est inférieure à celle enregistrée lors d’une action concentrique pour un même niveau de force produite (Section 2.2). Cette activation neuromusculaire peut être augmentée par l’entraînement excentrique. Hortobagyi et al. [43] rapportent ainsi une augmentation de l’activité EMG 2,6 fois plus importante après six semaines d’entraînement excentrique du quadriceps, par rapport à un entraînement concentrique équivalent. Des résultats similaires ont été obtenus sur les fléchisseurs du coude [58]. Ce résultat peut être dû :

- au faible degré d’activation musculaire en excentrique avant entraînement, en comparaison des autres modes de contraction (i.e. isométrique et concentrique) ;
- à une augmentation de l’activité EMG des fibres spécifiquement recrutées par l’exercice excentrique.

Il semble que les fibres de type II soient préférentiellement recrutées lors d’un entraînement excentrique. Nous avons vu également que l’exercice excentrique répété pouvait conduire à un recrutement progressif des UMs lentes afin de mieux répartir le stress mécanique en vue de protéger le muscle vis-à-vis des dommages. Ces processus pourraient être à l’origine d’une augmentation de l’activité EMG du muscle entraîné en régime excentrique. L’augmentation de la fréquence de décharge des UMs peut également expliquer ce gain d’activité EMG. Cependant, même si la fréquence de décharge peut être augmentée par l’entraînement, seulement 15 % de la force maximale est due à une modulation de ce paramètre dans les muscles de taille importante [93]. Récemment, des travaux ont été entrepris afin de préciser l’origine de ces différentes adaptations nerveuses à travers l’analyse de l’évolution de l’onde V et du réflexe H après une période d’entraînement excentrique des fléchisseurs plantaires [27]. Une augmentation de l’onde V peut résulter d’une augmentation du nombre d’UMs recrutées ou d’une augmentation de la fréquence de décharge des UMs. Cette augmentation de la commande centrale descendante dépend également de l’efficacité de la transmission nerveuse au niveau de la plaque motrice. Duclay et al. [27] ont mis en évidence une augmentation constante de l’onde V lors de contractions volontaires au cours de la période d’entraînement excentrique, soulignant une amélioration de l’excitabilité des motoneurones α ou une réduction de l’inhibition présynaptique des afférences Ia. Les gains de force pourraient également être la conséquence d’une diminution de l’activité des muscles antagonistes (co-activation). Sur le plan nerveux, un degré de co-activation moindre permet de réduire le niveau d’inhibition réciproque et ainsi faciliter le réflexe H. Néanmoins, l’entraînement excentrique ne semble pas avoir d’impact sur le niveau de co-activation, celui-ci restant stable entre le début et la fin de la période d’entraînement dans la plupart des études [19,115]. L’inhibition réciproque ne peut donc pas a priori expliquer les modifications du réflexe H observées [27]. Toutefois, les effets de l’entraînement excentrique sur l’amplitude du réflexe H sont différents en fonction du muscle considéré (i.e. pour le soleus et le medial gastrocnemius), ce qui suggère une organisation des boucles réflexes spécifiques au muscle. L’origine des différentes adaptations nerveuses induites par l’entraînement excentrique reste donc à préciser en fonction du groupe musculaire considéré.

2.3.3. Place de l’exercice excentrique dans la rééducation

L’exercice excentrique permet de travailler à des niveaux de couple de force importants, avec un coût énergétique et une consommation en oxygène moindre. Ce mode d’exercice est donc d’intérêt pour les cliniciens qui souhaitent inclure, dans leurs programmes de rééducation fonctionnelle des patients qui
présentent le plus souvent une intolérance à l’effort cardiorespiratoire intense (i.e. patients atteints de troubles cardiaques ou de pathologies pulmonaires). Nous avons précédemment évoqué l’effet protecteur que représente une séance d’exercice excentrique vis-à-vis des dommages musculaires. Chez des sportifs reprenant l’activité physique après une blessure, l’entraînement excentrique sous-maximales est donc un moyen pertinent pour préparer le système musculosquelettique à la reprise de l’effort et éviter la survenue de nouvelles lésions lors de cette phase de ré entraînement. Il est aussi utilisé dans la prise en charge d’autres pathologies, telles que la sclérose en plaques, pour son effet positif sur le contrôle moteur [108]. Initialement suggéré par Stanish et al. (1986), l’exercice excentrique chronique est également proposé dans le traitement des tendinopathies, notamment du tendon d’Achilles et du tendon patellaire. Ces pathologies représentent une large part de la médecine du sport [109] et un enjeu de santé publique puisqu’elles affectent également la population générale (environ 2% de la population active). Le programme de Stanish utilisait une augmentation progressive de la vitesse de mouvement en contraction excentrique et a été testé sur une cohorte de 200 patients. Les résultats ont montré une restauration complète de la fonction motrice pour 44% d’entre eux. S’inspirant des travaux de Stanish, Alfredson et al. [5] ont montré que la composante excentrique constituait un instrument thérapeutique essentiel de la réponse obtenue à la suite de ces programmes de rééducation.

La pathophysiologie du tendon atteint ou en cours de traitement n’est pas complètement connue. Il apparaît cependant que lors d’une tendinopathie, le tendon ne parvient pas à entrer dans un cycle actif de guérison [103]. L’exercice excentrique pourrait constituer un stimulus mécanique efficace aux cellules tendineuses quiescentes. D’autres études ont montré une interruption du flux sanguin en périphérie des cellules tendineuses lors d’un exercice excentrique [5]. Ce processus pourrait endommager les microcapillaires et les nerfs associés, réduisant ainsi la sensation de douleur. Récemment, Langberg et Kongsgaard [63] ont mis en évidence une augmentation de la synthèse de collagène (collagène de type I) principal élément constitutif du tissu tendineux, sans augmentation des processus de dégradation, au sein du tendon lésé après 12 semaines d’exercice excentrique. Les auteurs ont également observé une diminution de la douleur perçue par les patients. D’autres travaux ont montré une augmentation du flux sanguin ou du volume du tendon, suggérant une amélioration des échanges entre les tissus et le milieu interstitiel [117]. Ces processus adaptatifs justifieraient l’intérêt de l’exercice excentrique dans le renforcement des tissus tendineux chez les patients atteints. Toutefois, peu d’études ont comparé ces résultats aux effets induits par l’exercice concentrique. Les premières études comparatives ont montré que les pics de force générés in vivo au sein du tendon lors d’un exercice excentrique étaient similaires lors d’un exercice concentrique [102,113]. Ces résultats montrent que les bénéfices thérapeutiques de l’exercice excentrique ne sont pas seulement dus aux niveaux de force induits par ce mode d’exercice. D’autres auteurs ont suggéré que les variations de force produite seraient un stimulus responsable du remodelage du tendon à l’image des résultats obtenus sur les tissus osseux à l’aide de signaux haute fréquence [112]. Ces variations sont reflétées par la difficulté des sujets à contrôler le mouvement lors d’une contraction excentrique. Ainsi, si l’exercice excentrique est couramment utilisé dans le traitement des tendinopathies, certaines questions demeurent, notamment vis-à-vis des protocoles spécifiques (e.g. mode de contraction, charge, vitesse de mouvement) à utiliser en fonction des caractéristiques de la pathologie [63,103]. Enfin, il semble que l’exercice excentrique unilatéral augmenterait la force des muscles du membre controlatéral, et cela de manière plus marquée qu’après un entraînement concentrique [40,44]. L’introduction de contractions excentriques dans les programmes de rééducation permet ainsi une amélioration fonctionnelle des groupes musculaires du membre opposé et lésé sans avoir besoin de le solliciter.

2.4. Comparaison des exercices excentriques isotonique et isocinétique

2.4.1. Spécificités des modes isotonique et isocinétique

2.4.1.1. Mode excentrique isotonique (IT). In vivo, la sollicitation excentrique IT consiste à opposer un couple de force musculaire à une charge constante, qui peut dépasser les capacités de production de force du sujet (i.e. exercice excentrique supra-maximal [45]), entraînant l’allongement du complexe muscle-tendon. En condition excentrique IT, la charge constante est le plus souvent imposée par une barre ou des poids, procédés classiquement utilisés en entraînement de la force. Si la charge dans ce type d’exercice est fixée, le couple de force exercé par le sujet varie, notamment en raison des accélérations et décelérations qui s’appliquent à la charge imposée, et aux variations de longueur du bras de levier en fonction des appareils [4]. Cette modalité d’exercice constitue donc plutôt une sollicitation mécanique iso-inertielle, mais qui est classiquement désignée sous le terme « isotonique » dans la littérature [37]. La vitesse angulaire de mouvement lors de ce type de mouvement est variable et les niveaux de contrainte mécanique enregistrés sont très élevés (jusqu’à 140% de la répétition maximale pour des sujets entraînés), notamment aux angles articulaires extrêmes (i.e. début et fin d’amplitude de mouvement). Ainsi, une contraction excentrique IT comporte une première phase d’amortissement au cours de laquelle la force imposée par la masse dépasse la force musculaire, suivie d’une phase lors de laquelle le sujet contrôle la charge, jusqu’aux angles extrêmes où le contrôle de la charge devient plus difficile. Ce pattern de mouvement suggère que la contrainte IT sollicite de manière préférentielle les structures élastiques à ces angles extrêmes, le muscle étant d’avantage mis à contribution aux angles proches du pic de couple de force. La sollicitation excentrique permettant d’augmenter la raideur musculo-articulaire, ce mode d’action pourrait ainsi être privilégié en vue d’accroître la raideur au niveau des structures élastiques à ces angles articulaires. En revanche, l’activation musculaire n’est pas maximale sur l’ensemble de l’amplitude de mouvement, puisqu’à l’angle au pic de couple, les capacités de production de couple de force musculaire peuvent parfois
dépasser le couple de force imposé par les masses [37,46]. La sollicitation excentrique IT pourrait donc avoir un impact modéré sur les adaptations nerveuses et sur le gain de force à cet angle articulaire.

2.4.1.2. Mode isocinétique (IK). Une contraction excentrique IK se caractérise par la production d’un couple de force musculaire opposé au mouvement d’un bras de levier mobilisé à vitesse constante par un dynamomètre isocinétique (isocinétisme de mouvement) [54]. Ce type d’appareil induit une sollicitation maximale du système contractile sur l’ensemble de l’amplitude de mouvement [8,59], sans accélération importante, comme cela peut être le cas en excentrique IT. Les effets induits sur la raideur musculaire aux angles extrêmes pourraient ainsi ne pas atteindre ceux obtenus après un entraînement excentrique IT. Cependant, la force musculaire produite étant maximale sur la totalité de l’amplitude, l’activité des muscles sollicités, est elle aussi théoriquement maximale, et notamment aux angles au pic de couple, suggérant des adaptations nerveuses plus marquées avec ce type d’ entraînement en comparaison d’un entraînement excentrique IT. Ce mode d’exercice présente par ailleurs un intérêt majeur pour les cliniciens qui souhaitent proposer des programmes de rééducation fonctionnelle. L’isocinétisme permet en effet un arrêt immédiat du mouvement en l’absence de production de couple de force musculaire et impose une résistance adaptée aux capacités du sujet, ce qui offre des garanties de sécurité intéressantes pour les patients pris en charge [21].

2.4.2. Gains de force

Afin de pouvoir comparer les résultats obtenus suite à des entraînements excentriques IT et IK, les gains de force ont été rapportés au nombre de séances d’ entraînement effectuées par les sujets (Tableaux 1a et 1b). Lorsque l’on compare les gains de force moyens induits par les deux modes d’ entraînements excentriques, on constate que l’ entraînement excentrique IT augmente les capacités de production de force de 1,1 ± 1,0 % par séance [10,19,27,46–51,69,70,77,85,90,92,94,101,119,122,123,125,126,128] pour une durée moyenne d’ entraînement de 7,5 ± 3,4 semaines (Tableau 1a) contre 0,6 ± 3,0 %, pour l’ entraînement excentrique IK (durée moyenne d’ entraînement de 10,6 ± 4,9 semaines) [12,30,35,40,43,58,71,75,76,78,83,87,114,115,118] (Tableau 1b), soit un gain près de deux fois plus important en mode IT. Ainsi, il semblerait que les sollicitations IT soient, de ce point de vue, plus efficaces que les exercices excentriques, on constate que l’ entraînement excentrique IT et IK en régime concentrique, évoquant des gains de 0,5 à 1 % en IT contre 0,3 % par séance en moyenne en IK [106]. Les différences

Tableau 1a
Gains de force induits par l’ entraînement excentrique isotonique (IT).

<table>
<thead>
<tr>
<th>Muscles de la jambe</th>
<th>Auteurs</th>
<th>Sem × Fq</th>
<th>Volume</th>
<th>Intensité (%1RM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extenseurs de la jambe</td>
<td>Ben-Sira et al. [10]</td>
<td>8 × 2</td>
<td>10 × 3</td>
<td>65–85</td>
</tr>
<tr>
<td>Housh et al. [46]</td>
<td>8 × 3</td>
<td>3 × 6</td>
<td>80a</td>
<td>- +1,2 - ns ns</td>
</tr>
<tr>
<td>Johnson [49]</td>
<td>8 × 3</td>
<td>1 × 10</td>
<td>80</td>
<td>- +2,4 - -</td>
</tr>
<tr>
<td>Johnson et al. [50]</td>
<td>6 × 3</td>
<td>2 × 6</td>
<td>120</td>
<td>- - +1,0</td>
</tr>
<tr>
<td>Jones et Rutherford [51,52]</td>
<td>12 × 3</td>
<td>3 × 6</td>
<td>116</td>
<td>- +0,2 - -</td>
</tr>
<tr>
<td>Kaminski et al. [52]</td>
<td>6 × 2</td>
<td>2 × 8</td>
<td>100</td>
<td>+2,5 +3,2 - +2,0 +2,1</td>
</tr>
<tr>
<td>Pavone et Moffat [90]</td>
<td>6 × 3</td>
<td>3 × 10</td>
<td>40–79a</td>
<td>- - +1,3 -</td>
</tr>
<tr>
<td>Raue et al. [101]</td>
<td>4 × 3</td>
<td>3 × 8</td>
<td>80</td>
<td>- - - +0,6</td>
</tr>
<tr>
<td>Smith et Rutherford [119]</td>
<td>20 × 3</td>
<td>3 × 10</td>
<td>100–110</td>
<td>- - +0,4 +0,3 +0,3</td>
</tr>
<tr>
<td>Sorichter et al. [122]</td>
<td>6 × 1–3</td>
<td>7 × 10</td>
<td>150</td>
<td>- - +0,7 -</td>
</tr>
<tr>
<td>Spurway et al. [123]</td>
<td>6 × 1</td>
<td>3 × 6</td>
<td>100</td>
<td>+4,6 +4,3 +1,4 +2,8 +2,4</td>
</tr>
<tr>
<td>Weir et al. [128]</td>
<td>8 × 3</td>
<td>3 × 6</td>
<td>80a</td>
<td>- +1,2 +0,6 +1,4 +0,6</td>
</tr>
</tbody>
</table>

| Fléchisseurs de la jambe | Johnson et al. [50] | 6 × 3 | 2 × 6 | 120 | - - +1,4 |
| Mjolnes et al. [77] | 10 × 1–3 | 2–3 × 5–12 | PC | - +0,4 +0,3 - |

Fléchisseurs du bras	Colson et al. [19]	7 × 3	5 × 6	100–120	+2,6 +1,6 +0,5 +0,9 +1,1
Johnson [49]	8 × 3	1 × 10	80	- +1,4 - -	
Martin et al. [70]	4 × 3	3 × 5	100	- - +0,4 +1,3 +0,8	
Mannheimer [69]	4 × 5	2 × 5	-	- +3,0 - -	
Nosaka et Newton [85]	8 × 1	1 × 10	79	- - +0,7 0 0	
Petersen [94]	8 × 4–5	1 × 10	120–130a	- - +0,2 -	
Pousson et al. [98]	6 × 2	2 × 4–6	90–125	- - - -	
Valette et al. [125]	7 × 3	3 × 6	57–95	- +0,7 +0,5 +1,3	
Vikne et al. [126]	12 × 2–3	3 × 6	83–93	- +0,9 +0,5	
Johnson et al. [50]	6 × 3	2 × 6	120	- - +3,4 -	

| Extenseurs de l’avant-bras | Johnson et al. [50] | 6 × 3 | 2 × 6 | 120 | - - +1,6 |

| Fléchisseurs plantaires | Duclay et al. [27] | 7 × 2–3 | 6 × 6 | 100–120 | +1,7 +1,2 +1,6 |
| Pensini et al. [92] | 4 × 4 | 6 × 6 | 120 | - +1,0 +1,9 +0,9 |
en termes de contrainte mécanique (couple de force, vitesse de mouvement) imposée par les deux modalités (IT et IK) en fonction de l’angle articulaire pourraient également être à l’origine des disparités de gains de force induits. Cependant, si l’origine des gains de force est décrite pour l’entraînement excentrique en général (Section 2.4), les adaptations spécifiquement induites par les modalités IT et IK restent à déterminer.

2.4.3. Adaptations structurales induites par un entraînement isotonique ou isocinétique

L’entraînement excentrique permet de solliciter de manière maximale et supra-maximale le système musculosquelettique dont les structures contractiles s’adaptent lorsque l’entraînement se poursuit au-delà de six à sept semaines [95]. Six des 22 études retenues dans cette revue se sont intéressées aux évolutions du volume musculaire après une période d’entraînement excentrique IT (une étude ne rapporte pas de variations en pourcentage et n’est donc pas intégrée dans les calculs moyens) et sept études ont étudié ce paramètre suite à un entraînement excentrique IK. En moyenne, l’entraînement excentrique IT induit une hypertrophie musculaire de 3,26 ± 3,77 % [10,46,51,85,119,126] contre 7,26 ± 4,07 % après entraînement excentrique IK [12,30,35,40,58,114,118]. Rapportée au nombre de séances, l’hypertrophie obtenue en excentrique IT est de 0,10 ± 0,13 % contre 0,29 ± 0,17 % en IK. La durée moyenne de ces protocoles en IT est de 12 semaines contre dix semaines pour les entraînements IK. Ainsi, malgré des durées de protocoles plus courtes, l’entraînement excentrique IK semble induire une hypertrophie musculaire plus importante que l’entraînement excentrique IT. Il est par ailleurs intéressant de constater que les gains significatifs sont obtenus en 12 à 20 semaines en IT [119] alors qu’une augmentation du volume musculaire peut être observée en huit semaines d’entraînement excentrique IK [35]. De la même manière, l’intensité nécessaire

Tableau 1b
Gains de force induits par l’entraînement excentrique isocinétique (IK).

<table>
<thead>
<tr>
<th>Muscles de l’avant-bras</th>
<th>Auteur</th>
<th>Sem × Fq</th>
<th>Volume</th>
<th>Gains de force obtenus pour chaque gamme de vitesse de test (par séance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extenseurs de la jambe</td>
<td>Blazevich et al. [12]</td>
<td>10 × 3</td>
<td>4–6 × 6</td>
<td>30 - +1,3 - +0,5 -</td>
</tr>
<tr>
<td></td>
<td>Duncan [30]</td>
<td>6 × 3</td>
<td>1 × 10</td>
<td>120 +1,6 +1,5 - +0,2 -</td>
</tr>
<tr>
<td></td>
<td>Higbie et al. [40]</td>
<td>10 × 3</td>
<td>3 × 10</td>
<td>60 - +0,1 - +0,2 -</td>
</tr>
<tr>
<td></td>
<td>Hortobagyi et al. [43]</td>
<td>12 × 3</td>
<td>4–6 × 8–12</td>
<td>60 +3,2 +1,3 +0,1 -</td>
</tr>
<tr>
<td></td>
<td>Mayhew et al. [71]</td>
<td>4 × 3</td>
<td>5 × 10</td>
<td>60 - - +0,7 -</td>
</tr>
<tr>
<td></td>
<td>Miller et al. [76]</td>
<td>20 × 3</td>
<td>1–5 × 6</td>
<td>60 - +0,7 - +0,4 -</td>
</tr>
<tr>
<td></td>
<td>Seger et al. [114]</td>
<td>10 × 3</td>
<td>4 × 10</td>
<td>90 +0,3 +1,1 +0,3 +0,2 +0,1</td>
</tr>
<tr>
<td></td>
<td>Seger et al. [115]</td>
<td>10 × 3</td>
<td>4 × 10</td>
<td>90 +0,0 +0,9 - +0,0 +0,2</td>
</tr>
<tr>
<td></td>
<td>Thorstensson [115]</td>
<td>12 × 2</td>
<td>2–4 × 12</td>
<td>60 - +0,8 - - -</td>
</tr>
<tr>
<td>Extenseurs et fléchisseurs de la jambe</td>
<td>Nickols-Richardson et al. [83]</td>
<td>20 × 3</td>
<td>1–5 × 6</td>
<td>60 - +0,5 - +0,2 -</td>
</tr>
<tr>
<td>Fléchisseurs de la jambe</td>
<td>Melo et al. [75]</td>
<td>12 × 2</td>
<td>2–4 × 12</td>
<td>60 - - - +0,5 -</td>
</tr>
<tr>
<td>Extenseurs de l’avant-bras</td>
<td>Farthing et Chiliback [35]</td>
<td>8 × 3</td>
<td>2–6 × 8</td>
<td>180 +0,7c - +0,9d</td>
</tr>
<tr>
<td></td>
<td>Komi et Buskirk [58]</td>
<td>7 × 4</td>
<td>1 × 6</td>
<td>30 +0,3 - +0,7d</td>
</tr>
<tr>
<td></td>
<td>Paddon-Jones et al. [87]</td>
<td>10 × 3</td>
<td>4 × 6</td>
<td>180 +0,9 +1,0 +0,7 +1,0 +1,0</td>
</tr>
<tr>
<td></td>
<td>Shephstone et al. [118]</td>
<td>8 × 3</td>
<td>1–4 × 10</td>
<td>210 +0,7 +0,2 - +1,2 +2,4</td>
</tr>
<tr>
<td>Extenseurs et fléchisseurs de l’avant-bras</td>
<td>Nickols-Richardson et al. [83]</td>
<td>20 × 3</td>
<td>1–5 × 6</td>
<td>60 - +0,4 - +0,2 -</td>
</tr>
<tr>
<td>Rotateurs de l’épaule</td>
<td>Mont et al. [78]</td>
<td>6 × 3</td>
<td>8 × 10</td>
<td>90–180 +0,8e +0,5f - +0,1f +0,5f</td>
</tr>
</tbody>
</table>

Gains de force obtenus après entraînement excentrique isotonique (IT, Tableau 1a) et isocinétique (IK, Tableau 1b) pour chaque gamme de vitesse de test utilisé : excentrique à vitesse angulaire de mouvement supérieure à 90°.s⁻¹ (< −90°.s⁻¹), excentrique à vitesse angulaire de mouvement inférieure à 90°.s⁻¹ (< −90°.s⁻¹), isocinétique (0°.s⁻¹), concentrique à vitesse angulaire de mouvement inférieure à 90°.s⁻¹ (< 90°.s⁻¹) et concentrique à vitesse angulaire de mouvement supérieure à 90°.s⁻¹ (< 90°.s⁻¹). Les gains de force sont exprimés en pourcentage de la valeur pré-entraînement et rapportés aux nombre total de séances effectuées durant la période d’entraînement. Les évolutions significatives sont indiquées en gras. Lorsque plusieurs vitesses de test ont été utilisées dans chacune des gammes, la valeur affichée représente la moyenne des gains de force obtenus pour l’ensemble des vitesses testées.

Sem : semaines ; Fq : fréquence (nombre de séances par semaine d’entraînement) ; 1 RM : charge maximale que le sujet peut soulever une seule fois ; Volume : nombre de séries × nombre de répétitions ; (p < 0,05).

a Intensité fixée en pourcentage de la répétition maximale excentrique.
b Intensité fixée en pourcentage de la force maximale isocinétique.
c Gains de force moyens pour toutes les vitesses de test en contraction excentrique.
d Gains de force moyens pour toutes les vitesses de test en contraction concentrique.
e Gains de force moyens pour les muscles rotateurs internes et rotateurs externes de l’épaule.
f Vitesse angulaire moyenne.
pour observer une hypertrophie musculaire en IT doit se rapprocher ou dépasser 100 % de la répétition maximale (1RM) si la durée ne dépasse pas les huit à dix semaines. Le fait que l’intensité de l’exercice soit maximale sur la totalité de l’effort en excentrique IK semble donc favoriser le gain de masse musculaire. Ce résultat ne semble cependant pas avoir d’impact sur les gains de force qui sont plus élevés après entraînement excentrique IT.

Concernant l’hypertrophie par type de fibres musculaires, le bilan des différentes études montre clairement une hypertrophie des fibres de type II principalement, quel que soit le mode utilisé (IT ou IK). Seules trois études montrent une hypertrophie des fibres de type I après entraînement excentrique [52,87,92]. Le nombre peu important de travaux développés sur ce sujet ne nous permet pas de conclure quant à la supériorité d’un mode d’exercice par rapport à l’autre pour provoquer une hypertrophie typologique préférentielle. En ce qui concerne les modifications typologiques des fibres musculaires, les modes IT et IK induisent une diminution du nombre de fibres de type I et IIb avec une augmentation de la proportion de fibres de type IIa/IIb [12,43,87,101,114,118,126].

Les travaux ayant investigué l’effet de l’entraînement excentrique sur les propriétés mécaniques sont très peu nombreux. En effet, aucune étude ne s’est intéressée aux évolutions des propriétés mécaniques à la suite d’une période d’entraînement excentrique IK. En revanche, les travaux réalisés sur le mode IT ont montré une augmentation de la raideur de la composante élastique en série due à une augmentation de la synthèse de collagène [98], et une diminution de la raideur musculaire en raison d’une augmentation de la longueur des fascicules, caractérisée en conditions passives après un entraînement excentrique IT [68]. La raideur tendineuse montre une tendance à l’augmentation après ce type d’entraînement. Ces résultats restent cependant à confirmer et à comparer avec la modalité IK. Enfin, à notre connaissance, seule une étude a étudié l’effet de l’entraînement excentrique IK sur l’architecture musculaire [12], ce qui ne nous permet pas d’établir une comparaison avec l’excentrique IT. Les résultats ont montré une augmentation de l’angle de pénetration (+21,4 %) et de la longueur des fascicules (+3,1 %) après dix semaines d’entraînement excentrique IK.

2.4.4. Adaptations nerveuses suite à un entraînement isotonique ou isocinétique

L’ensemble des travaux consacrés à l’étude des adaptations nerveuses induites par l’entraînement excentrique montrent une augmentation de l’activation neuromusculaire des groupes musculaires entraînés. Il est de ce point de vue intéressant de noter que les gains d’activation musculaire sont plus élevés après un entraînement excentrique IT (+1,80 ± 1,54 % par séance) [19,27,92,125], par rapport à un entraînement excentrique IK (+0,43 ± 0,17 % par séance) [40,43,58,115]. De la même manière, une étude montre une augmentation significative de l’activation maximale volontaire (+17 %) [92], paramètre qui, à notre connaissance, n’a pas été étudié sur le mode IK. Enfin, cette même étude montre une réduction de la co-activation musculaire (−22 à −29 % par rapport au niveau de co-activation initial) après une période d’entraînement excentrique IT [92] alors qu’aucune évolution significative n’a été mise en évidence après un entraînement IK [12].

Ainsi, l’entraînement excentrique IT semble plus favorable aux adaptations de la commande nerveuse des muscles sollicités, ce qui ne permet pas de valider l’hypothèse formulée selon laquelle l’entraînement IK serait plus efficace de ce point de vue en raison des pics de couple de force plus élevés que ce mode permet d’atteindre (Section 2.4.1.1). Toutefois, le paramètre sélectionné (e.g. activation moyenne sur l’ensemble de l’amplitude de mouvement, activation au pic de couple de force) pour évaluer l’évolution de l’activation neuromusculaire varie en fonction des études, ce qui peut influencer les résultats obtenus. En effet, le degré d’activation n’est pas nécessairement mesuré aux angles articulaires où s’exprime le pic de couple, secteur présentant une activation musculaire plus importante en IK. Ces résultats pourraient expliquer en partie les gains de force plus importants obtenus via l’entraînement excentrique IT (Section 2.4.2).

2.5. Conclusion

L’exercice excentrique est un moyen efficace d’induire des changements structuraux importants du complexe musculo-tendon et des adaptations de la commande nerveuse. Ces adaptations permettent une augmentation importante des capacités de production de force maximale, souvent supérieure à celle obtenue avec des entraînements concentriques ou isométriques. Un bilan comparatif des processus adaptatifs induits par les deux modalités de sollicitation classiquement utilisées en excentrique a permis de mettre en évidence une supériorité du mode IT par rapport au mode IK en ce qui concerne les gains de force obtenus. Ce constat peut s’expliquer par des modifications de la commande nerveuse plus importantes à la suite de ce type d’entraînement. L’entraînement excentrique IK semble à l’inverse plus favorable à l’hypertrophie musculaire. Les mécanismes adaptatifs (structuraux et nerveux) restent encore à préciser car les études sur les deux modes (IT, IK) restent peu nombreuses. La synthèse des travaux présents dans la littérature exposée dans cette revue a permis d’identifier des différences dans les processus adaptatifs induits par les entraînements excentriques IT et IK (i.e. hypertrophie musculaire supérieure après entraînement IK, augmentation de l’activation neuromusculaire plus importante après entraînement excentrique IT). Toutefois, les effets des entraînements excentriques IT et IK n’ont à ce jour pas été comparés en conditions standardisées. De tels travaux permettraient de statuer plus précisément sur la pertinence de leur utilisation dans le cadre de l’entraînement ou en rééducation fonctionnelle, en fonction des objectifs adaptatifs visés.

Conflict of interest statement

The authors do not declare any conflict of interest.
References

