Posture and gait abilities in patients with myotonic dystrophy (Steinert disease). Evaluation on the short-term of a rehabilitation program

Capacités posturolocomotrices et maladie de Steinert. Évaluation à court terme d’un programme de rééducation

B. Missaoui a,b, E. Rakotovao a, S. Bendaya a, M. Mane a, B. Pichon a, M. Faucher a, P. Thoumie a,* b

a Service de rééducation neuro-orthopédique, pôle de médecine physique et réadaptation, hôpital Rothschild, AP–HP, université Pierre-et-Marie-Curie, 33, boulevard de Picpus, 75012 Paris, France
b Équipe Rime, laboratoire CIAMS, UFR Staps, université Paris-Sud, 91405 Orsay, France

Received 1 September 2009; accepted 8 May 2010

Abstract

Objectives. – To evaluate the effects of a rehabilitation program in terms of balance, gait and muscle strength in a population of patients with myotonic dystrophy.

Patients. – Twenty patients benefited, as outpatients in a hospital setting, from a rehabilitation program with clinical and instrumental evaluations. The evaluation focused on quantitative balance measurement by clinical and stabilometer tests, gait assessed by Locometre® and extensors and flexors knee muscle strength measured in isokinetic concentric mode at 60°/s.

Results. – After the rehabilitation program, we observed a significant improvement in the patients’ balance capacities measured with the Berg Balance Scale (BBS), fast gait speed and muscle strength. However, the instrumental evaluation did not report any gains for static balance and spontaneous gait speed after the training program. No correlation was found between the various improvements.

Conclusion. – A rehabilitation program focused on strength, gait and balance allowed for significant improvements in some parameters of myotonic dystrophy. These results attest to the relevance of a short-term rehabilitation protocol for these patients in the framework of a multidisciplinary therapeutic care. The disparity observed in the results measured for these patients suggest the contribution of cognitive involvement in the limitations felt by patients with myotonic dystrophy in the areas of gait and balance.

© 2010 Elsevier Masson SAS. All rights reserved.

Keywords: Myotonic dystrophy; Steinert’s disease; Balance; Gait; Muscle strength; Rehabilitation

Résumé

Objectifs. – Évaluer les effets d’un programme de rééducation en termes d’équilibre, de locomotion et de force musculaire dans une population de patients atteints de dystrophie myotonique de Steinert.

Patients. – Vingt patients ont bénéficié d’un programme de rééducation mené en milieu hospitalier et encadré par une évaluation clinique et instrumentale. L’évaluation a porté sur une mesure quantitative de l’équilibre par tests cliniques et stabilométriques, de la marche évaluée par le Locomètre® et de la force des muscles extenseurs et fléchisseurs du genou mesurés en isocinétisme en mode concentrique à 60° par seconde.

Résultats. – Après rééducation, on observe une amélioration significative des capacités d’équilibration mesurée par l’échelle de Berg, de la vitesse de marche rapide et de la force musculaire. L’évaluation instrumentale de l’équilibre statique et de la vitesse de marche spontanée ne montre pas de gain après rééducation. Aucune corrélation n’est retrouvée entre les différents gains.

* Corresponding author.
E-mail address: philippe.thoumie@rth.aphp.fr (P. Thoumie).

10.1016/j.rehab.2010.06.004
Conclusion. – Un programme de rééducation centré sur la force, la marche et l’équilibre a permis une amélioration significative de certains paramètres dans la dystrophie myotonique de Steinert. Ces résultats témoignent de l’intérêt d’une rééducation motrice à court terme chez ces patients dans un contexte de prise en charge multidisciplinaire. La dissociation observée dans les résultats mesurés chez ces patients suggère la contribution d’une participation cognitive aux limitations ressenties par les patients atteints de myopathie de Steinert dans le domaine de la marche et de l’équilibre.

Mots clés : Dystrophie myotonique ; Steinert ; Équilibre ; Marche ; Force musculaire ; Rééducation

1. English version

1.1. Introduction

Gait and balance disorders are one of the functional consequences of the impairments linked to myotonic dystrophy (Steinert disease). This affection, characterized first of all by progressive muscle atrophy, allows patients to maintain an autonomous gait for some time. However, it is also coupled to limited walking perimeter and gait speed as well as falls contributing to difficulties in social settings.

Among the deficits that promote balance disorders and falls in myotonic dystrophy, we find first of all the muscles and skeletal affections [11] responsible for motor deficits most often distal and axial impairments and loss of extensibility of the two-joint muscles that can limit joint range of movement (ROM). Furthermore, we can find, to varying degrees, decreased visual acuity [22], cognitive [6] and anxious-depressive disorders [8], severe fatigue [12], sensory-motor neuropathy [19], as well as cardiac arrhythmia and conduction disorders [9]. For some of these disorders, the data have been known for years and justify that beyond a multidisciplinary therapeutic care for these patients, a meticulous evaluation of each patient’s various impairments need to be conducted before proposing a rehabilitation protocol based on clearly defined and accepted objectives.

Even though the gait and balance disorders in myotonic dystrophy are frequently reported in daily clinical practice, they have not been the focus of many studies in the literature and their therapeutic care remains poorly defined. To this day, in the only controlled study focused on this subject [13], a home self-training program supervised by a physiotherapist did not report any gains in muscle strength parameters for a population of patients affected by myotonic dystrophy. However, more than in other pathologies, the reality of cognitive disorders has a negative impact on rehabilitation training programs that are only supervised at a distance and the association of other disorders suggests that patients could benefit from a more elaborated therapeutic care focused on balance improvement.

The goal of this study was to evaluate in a noncontrolled, open study the impairments of patients with myotonic dystrophy and assess the efficacy of a multidisciplinary rehabilitation care focusing on balance, muscle strength and gait in an outpatient hospital setting.

1.2. Patients and method

1.2.1. Patients

The design of the study was a retrospective analysis of the medical files of 20 patients involved in a rehabilitation training program focused on balance and gait.

The diagnosis of myotonic dystrophy was established or validated by the neurological team of the Reference Center for rare neuromuscular diseases of the Salpêtrière Hospital. First of all, within the framework of the therapeutic care of these adult patients, a clinical and instrumental evaluation was systematically proposed to patients that reported gait instability with falls. Secondly, a balance and gait rehabilitation program conducted in the outpatient unit of our hospital was proposed to patients that accepted the project and its objectives. In addition, to this therapeutic care, several other evaluations were associated: occupation therapy, speech therapy as well as neuropsychological tests in order to define a more specific therapeutic care according to the specific impairments of the patients. To conduct these instrumental functional assessments, the patients needed to be able to walk without any technical aid for more than 10 m and stand still on both feet for 1 min. In this study, were included all patients with myotonic dystrophy who benefited from therapeutic rehabilitation care from 2007 to 2009. The patients excluded were individuals with cardiovascular disorders, contraindication to effort training, or subjects with cognitive disorders that would have limited their active participation in this program.

1.2.2. Evaluation methodology

1.2.2.1. Clinical evaluation. The clinical interview was based on the patient’s self-assessment of his walking perimeter and the frequency of falls during the past year.

Balance was clinically assessed using three scales. The Berg Balance Scale (BBS) [3] consisting of 14 items that are scored on a scale of 0 to 4. Items include mobility tasks such as transfers, standing unsupported in both static and dynamic settings. The Functional Reach Test (FRT) for assessing balance measures the hand movement, arm stretched horizontally, going from a standing position to a bent forward position. The Timed Up and Go (TUG) Test is a measurement of mobility. It includes a number of tasks such as standing from a sitting position, walking, turning, stopping, and sitting down which are all important tasks needed for a person to be independently mobile. For the test, the person is asked to stand up from a standard chair and walk a distance of approximately
3 m, turn around and walk back to the chair and sit down again. These three scales are commonly used in neurology daily practice and for fall prevention in elderly [18].

1.2.2.2. Instrumental evaluations
The objective gait and balance parameters were collected using the same evaluation method our team at previously used to assess the determinants of locomotion in patients with multiple sclerosis [20] with a validated responsiveness to change after a specific rehabilitation program for these patients [5]. In order to avoid any state of fatigue that could trigger biomechanical consequences, the evaluations were performed in an order corresponding to a growing cardiovascular solicitation (first balance, then gait and finally muscle strength) with a 10-minute interval between each test. The total duration of all the different tests was 75 mins, which included rest periods.

1.2.2.2.1. Balance parameters. Evaluating balance in static conditions was done using a stabilometer, a force-measuring platform (Satel, Blagnac, France), that collected the data during a task consisting in maintaining balance for 51 s. The evaluation was done successively with eyes open, eyes closed, on a hard surface then on a 4-cm thick foam surface, for a total of four different experimental settings. The stabilometer force-plate’s surface was kept as a relevant parameter of balance in all the different test settings.

1.2.2.2.2. Gait parameters. The Locometre® (Satel) designed by Bessou et al. [4] is made for analyzing spatiotemporal parameters during gait. This method is based on the recording of the longitudinal step length of each foot during a predefined walking perimeter. Each foot’s movement is transmitted via an inextensible thread to an optic probe. The thread is kept under tension by an electrical motor sending out a mechanical recall force that is maintained constant by a micro-computer system. After telling the patient to start, he or she has to walk over a 7-meter distance on a flat surface without any obstacles. The parameters that were kept for our study were gait speed, stride frequency and stride length. A first try-out test was performed for the patient to get familiar with the setting, and then two measures recordings were done under the following conditions: spontaneous gait speed and fast gait speed.

1.2.2.2.3. Evaluation of muscle strength. Isokinetic muscle strength measurement is one of the tools available for quantifying, in dynamic settings, the objective impairments of neurological pathologies; this tool has already been used for myotonopic dystrophy [2]. It has the advantage of having a high responsiveness to change greater than the one obtained with manual testing for moderate impairments (manually quoted at 4 or 5) and showed a correlation to gait parameters [16] contrarily to isometric evaluations. The examination was conducted with the patient sitting on an isokinetic dynamometer Cybex Norm®, after warming-up; the patient performed a series of five flexion-extension movements at the speed of 60°/s. This slow speed allowed for a better performance of the impaired muscle [7].

1.2.3. Rehabilitation program
It included 15 rehabilitation sessions spread out over a 6-week period. The therapeutic care was conducted by a multidisciplinary team with two or three sessions per week of physiotherapy and occupational therapy associated to, according to the cases, speech therapy or seeing a psychologist. These sessions were adapted to the fatigability and autonomy of each patient.

Rehabilitation training included stretching exercises for muscle stiffness, balance training, muscle strengthening and endurance training, each session included about 2 hours of individual rehabilitation training.

Balance training was performed both in static and dynamic conditions on a wobble force-plate and in a walking corridor with obstacles in a single task and double tasks situations (carrying a glass full of water and a counting exercise).

The muscle strengthening program focused on muscle training at knee level on an isokinetic dynamometer. The sessions included a succession of five series of 10 contractions against resistance with varying speed from 60 to 180 degrees per second.

Endurance training consisted in walking on a treadmill: a 20-minute session with an adapted speed at 60% of the maximum heart rate (210 – patient’s age).

A specific rehabilitation care for the spinal cord and upper limbs was associated to this muscle training according to the initial evaluation check-up but will not be detailed in this article.

1.3. Statistical analysis
It was based on comparing the values collected during the quantitative measures before and after rehabilitation. Data processing was done with Stat-View software and the repeated measures Anova test using $P < 0.05$ as a significant threshold. The data collected during the instrumental evaluation on healthy subjects (similar in age and sex) were reported for comparison value.

1.4. Results
1.4.1. Population
The population included 20 subjects, 13 men for seven women; mean age 51 years (ranges 32–69).

1.4.2. Balance
The data collected on the frequency on falls for this population reported a mean rate of 1.5 fall per month (ranges two per week to one per year).

During the initial evaluation, the clinical tests (Table 1) showed a decrease in balance capacities measured by the BBS (44 versus normal value at 56), the FRT (11 cm versus normal value above 25 cm) and the TUG test (12 s versus normal value below 9 s).

Balanced measured on a force platform (Table 2) reported a widening of the stabilogram’s surface with the eyes open at 566 (426) mm², i.e. very much below the normal values in healthy subjects (mean: 91 mm², CI: 39–210 mm²).
Recording balance measurements with the eyes closed was only possible for 13 out of the 20 subjects. The mean value for the stabilogram’s surface in these patients EC was 757 mm2 (mean of healthy subjects: 225 mm2, CI: 79–638 mm2).

Balance measurements on the foam surface with the eyes open was only possible in seven subjects and with the eyes closed in one subject.

After rehabilitation, there was a significant balance improvement validated by clinical tests. The mean gain was 3.75 points on the BBS, 4.55 cm on the FRT and 2.5 s on the TUG test. The number of patients that completed the instrumental tests on a hard surface with eyes closed increased from 13 to 15, on the foam surface with the eyes open from seven to 16 and the foam surface with the eyes closed from one to six. Taking into account only patients that were initially able to complete the three tests, no significant change was found for the mean values of the stabilogram’s surface in the various experimental settings.

1.4.3. Locomotion

The patients included in this study used a technical aid in eight upon 20 cases. Their walking perimeter was evaluated at a mean of 1437 m (ranges: 50–6000 m). No significant difference was found after rehabilitation.

Regarding gait parameters (Table 3), we noticed a clear decrease of the spontaneous gait speed with a mean at 2.79 km/h corresponding to a concomitant decrease of the stride frequency and stride length. A decrease of fast gait speed was also reported.

After the rehabilitation program, we did not observe any improvement of the spontaneous gait speed parameters but we reported a 6% increase of the fast gait speed (going from 3.84 to 4.08 km/h, $P < 0.05$), with an increased stride frequency (nonsignificant) without any changes in stride length.

1.4.4. Muscle strength

The analysis of the muscle strength of the knee extensor/flexors in concentric isokinetic training in knee flexion/extension at the speed of 60°/s, (expressed in Newton metre [Nm]) took into account the possibility of an asymmetric impairment. Thus, we named Qmax the quadriceps of the stronger limb and Qmin for the weakest one, HMmax the hamstrings of the stronger limb and HMmin for the weakest one.
The measures collected before rehabilitation (Table 4) in these 20 subjects highlighted a decrease of the peak torque in concentric training for these patients’ quadriceps and hamstrings. The ratios HM/Q were 0.67 and 0.68 i.e. a normal value. After strength training, we observed a significant improvement of the peak torque for the quadriceps of the weaker limb (QMin: 9 ± 12 Nm, P < 0.01) and hamstrings (HMMax and HMMin: 12 ± 7 and 11 ± 10 Nm respectively, P < 0.001) without improvement to the quadriceps of the stronger limb. The ratios were respectively 0.85 and 0.86 after training.

1.4.5. Correlations between the different variables

The statistical analysis (Spearman’s rank correlation coefficient) did not unveil any significant correlation between the improvement of the muscle strength parameters and the clinical balance parameters on one hand or the fast gait speed on the other hand.

1.5. Discussion

We present here the first results of a study evaluating the locomotor and posture-locomotion impairments in patients with myotonic dystrophy that are at risk for falls.

Among the results of this study, we should bring up first the strong muscle deficits of the knee stabilizer muscles (quadriceps and hamstrings) associated to an instability measured with a stabilometer and a decrease in gait speed.

We found very few studies in the literature that focused on myotonic dystrophy and balance/postural evaluation and none reported the association of objective parameters of impairment and function in static and dynamic settings. In patients affected by a similar rare disease, myotonia congenita, Baumann et al. [2] did highlight a 30 Nm decrease in peak torque of the quadriceps measured at 60°/s versus a control group, without defining the results on the antagonist muscles. The first objective correlation between deficit and functional impairment in myotonic dystrophy was established by Lindeman et al. [14] by unveiling an influence of the quadriceps deficit (measured on an isokinetic dynamometer at 120°/s) in the decreased performances for completing timed tasks such as going down the stairs and spontaneous gait speed with respectively a coefficient of determination of 0.73 and 0.56.

More recently, Wiles et al. [23] focused on falls in patients with myotonic dystrophy by recording nonstop over a 1-week period the gait parameters of these patients using a portable system. All the intercurrent events occurring during the dynamic activities as well as falls were computed and the results were compared to healthy controls, they revealed a higher rate of falls for these patients for a lesser activity without being able to determine the cause. These results are similar to those found in elderly individuals at risk for falls, in that case the predictive threshold measured by the BBS was at 44 out of 56, close to the mean value of our series [3].

The second part of the results focused on the improved impairments for patients involved in our rehabilitation protocol.

Due to the lack of knowledge regarding the pathophysiology of falls for these patients, there is no validated protocol for instability therapeutic care but some authors did look at training programs without fatigue and reported contradictory results. In fact, if several teams validated the efficacy of a submaximal muscle strengthening program [1,21], Lindeman et al. [13] reported no gains for a muscle strengthening program of the lower limbs on a 24-week period in the only controlled, randomized study on 33 patients, for the analytical validation criterion (peak torque of the quadriceps and hamstrings in isokinetic, isometric contraction time) or the functional validation criterion (walking up the stairs test). However, none of these studies has evaluated the probable need of functional training for strengthening the action of all the structures not impaired by the disease and that are involved in balance management. Only Orngreen et al. [17] report the usefulness of aerobic training. In fact, after 12 weeks of daily exercises on a stationary bike (ergometer), the authors highlighted, in 12 patients an improvement of cardiorespiratory endurance (V\text{O2max}) and quality of life (Short Form 36 (SF36) questionnaire) without raising muscle enzymes. The authors however reported the lack of long-term compliance for this type of treatment.

In our study, we report a homogeneous improvement of balance management clinical tests, increased fast gait speed as well as muscle strength expect for quadriceps evaluated on the strongest limb.

The improvement reported in muscle strength test is contradictory to the results reported by Lindeman et al. [13] in spite of close initial values measured on the quadriceps and hamstrings. The increased muscle strength in our study seems to be correlated to two factors. First, in our study, the patient takes part in rehabilitation program with the presence of a physiotherapist versus a self-rehabilitation program supervised from afar. The severity of cognitive disorders in patients with myotonic dystrophy makes it difficult to follow these patients and ensure their compliance with the treatment as it was.
underlined by Ørngreen et al. [17]. A repeated solicitation by the physiotherapist was necessary all along this therapeutic care program for patients that were selected based on their will to move around and to be involved in this rehabilitation program. The choice of a highly motivated population might also explain this result as well as a dynamic rehabilitation with biofeedback in real time, made possible by isokinetic tool, allowing the patient to stay motivated during the entire program looking at the results’ evolution.

The improved balance management capacity is clearly highlighted by a homogeneous result in the clinical tests and an increased feasibility of the most complex instrumental tests. According to the wide array of the results obtained with instrumental tests, the improvement of the balance management capacities does not reach a significant value and cannot be recommended as an evaluation criterion in this pathology. By contrast, it is important to note the major involvement of sensory inputs in managing balance for persons with myotonic dystrophy; this had not been reported before. After the rehabilitation program, the increase in balance management capacities with the eyes closed or on a foam surface shows clearly a decreased need for visual and proprioceptive afferents, some patients becoming able to find their balance on a foam surface which is validated as one of the most relevant test for assessing the risk of falls [15].

According to our results, the improvement in fast gait speed corresponds to a tendency in increased velocity without any increase in step length. It might be the consequence of the improved balance during gait; the patients describe a sensation of being more stable in dynamic conditions. The endurance training program in our protocol is probably insufficient to improve the walking perimeter which did not show any changes at the end of our therapeutic care.

For myotonic dystrophy, the biomechanical aspect of falls is still based on many different and not yet validated pathophysiological elements that some patients describe during the medical consultation. Thus, they frequently report hitting an obstacle with one foot and to a lesser degree falling down from their own height. These two clinical pictures bring up respectively a deficit of the foot flexors associated, in varying degrees, to a stiffness of the triceps surae limiting ankle dorsiflexion and a deficit in active knee locking due to impaired quadriceps. However, our study does not bring any new argument for establishing a correlation between the improvement of balance and gait disorders and gain in muscle strength, thus suggesting other hypotheses.

If these elements seem to be mostly responsible for balance disorders and falls, other biomechanical and pathophysiological hypotheses can be looked at. Most falls occur in dynamic conditions, myotonia can promote some of these episodes by having a negative impact on antagonist muscle groups involved in the key active elements for walking, creating a “locking” situation. Unfortunately, we do not have a specific tool for evaluating, in dynamic condition, myotonia on the lower limbs to back up this hypothesis.

The association of cognitive disorders, even intense fatigue, which according to Kalkman et al. [12] affects 75% of these patients, can also have an impact on the patients’ attention and gait quality. This could explain that apart from analytical muscle strengthening and the work done on improving balance management capacities requiring multiple sensory compensatory mechanisms, the rehabilitation program proposed to our patients can contribute to improving their condition simply by having a better knowledge of their impairments and accessing a more adapted therapeutic care of the compensatory mechanisms. Some of these patients, at first during the initial phase had a difficult time acknowledging their impairments; some were even denying having any. A recent study underlined an improvement of the balance disorders after a simple evaluation outside any rehabilitation care [10], showing the importance of cognitive phenomena in this area. A regular multidisciplinary care of these patients seems to be the key to improving the parameters that we evaluated in this study.

Nevertheless, beyond the positive results of this study, several questions still need to be addressed. If the tests used in our protocol report a significant improvement of some parameters, their clinical relevance still needs to be validated. In fact, a clinically significant threshold for gains in muscle strength, balance and gait still has to be defined for this population. Furthermore, the functional future of these patients remains uncertain. Besides the natural progression of the disease, the transposition of the results in the patients’ daily life and maintaining the benefits of the rehabilitation program would require a controlled study including an ecological evaluation of gait and balance capacities in a home setting. Taking these neuropsychological factors into account should shed some light on the mechanisms involved in balance and gait disorders for these patients.

1.6. Conclusion

This study describes the relevance of measuring posture-locomotion deficits in patients with myotonic dystrophy and brings, for the first time, some arguments in favor of the positive impact of a rehabilitation protocol for gait and balance.

These results were only acquired for a selected population after an intensive rehabilitation program conducted within a hospital setting and the results were evaluated on the short-term.

The disparity between muscle strength gains and balance management and gait capacities shows the complex nature of this rehabilitation and brings up questions on the pathophysiology of the disorders observed in persons with myotonic dystrophy.

If these results will lead us to reassess our recommendation regarding rehabilitation for muscular dystrophy, they need to be validated by a controlled study defining clinically relevant thresholds and following these patients by monitoring the relevance of this therapeutic care as well its impact on their quality of life.

Conflicts of interest statement

The author has no conflict of interest.
Acknowledgments

We would like to thank the neurology team of the Reference Center for rare neuromuscular diseases of the Salpêtrière Hospital (especially Prof. Eymard and Dr. Laforet) for trusting us with the therapeutic care of their patients, as well as the physiotherapy team (X. Lobet, D. Delorme, P. Stephan) who helped with the design and participated in this rehabilitation program.

2. Version française

2.1. Introduction

Les troubles de la marche et de l’équilibre sont une des conséquences fonctionnelles des déficiences liées à la dystrophie myotonique de Steinert. Cette affection caractérisée avant tout par une atteinte musculaire d’évolution lentement progressive reste longtemps compatible avec le maintien d’une marche autonome. Elle s’accompagne toutefois d’une limitation du périmètre et de la vitesse de marche et s’accompagne souvent de chutes qui constituent un frein social.

Parmi les déficiences susceptibles de favoriser les troubles de l’équilibre et les chutes dans la maladie Steinert, on retrouve au premier plan l’atteinte musculosquelettique responsable d’une déficience motrice le plus souvent distale et axiale et de la perte d’extensibilité des muscles biarticulaires pouvant limiter la mobilité articulaire. À cela, peuvent s’ajouter dans des proportions variables, une baisse de l’acuité visuelle ainsi que des troubles cognitifs et anxiodepressifs, une fatigue sévère et une neuropathie sensitivo-motrice, ainsi que des troubles du rythme et de conduction cardiaque. Ces données sont connues pour certaines de longue date et justifient qu’au-delà de la prise en charge multidisciplinaire de ces patients soit réalisée une évaluation minutieuse de l’ensemble des déficiences de chaque patient avant de proposer un protocole de rééducation basé sur des objectifs clairement définis et acceptés.

Bien que fréquemment rapportés en pratique clinique quotidienne, les troubles de la marche et de l’équilibre dans la maladie de Steinert ont fait l’objet de peu d’exploration dans la littérature et la prise en charge thérapeutique, qui doit en découdre, reste mal définie. Dans la seule étude contrôlée réalisée à ce jour, un programme d’autorééducation supervisé à domicile n’a pas permis d’améliorer les paramètres de force musculaire dans la population de dystrophies myotoniques soumise à l’évaluation basé sur des objectifs clairement définis et acceptés. Le but de ce travail a été d’évaluer une échelle de marche et de santé physique dans la population de dystrophies myotoniques soumise à l’évaluation basé sur des objectifs clairement définis et acceptés.

2.2. Patients et méthode

2.2.1. Patients

Nous avons procédé à l’analyse rétrospective de 20 dossiers de patients qui ont reçu un traitement de rééducation multidisciplinaire de marche et d’équilibre. Le diagnostic de dystrophie myotonique de Steinert a été porté par l’équipe neurologique du centre de référence des maladies neuromusculaires rares auxquels participe notre service. Dans le cadre de la prise en charge de ces patients adultes, une évaluation clinique et instrumentale est systématiquement proposée aux patients rapportant à l’interrogatoire une instabilité à la marche associée à des chutes. Un programme de rééducation du l’équilibre et de la marche réalisé en hôpital de jour est proposé dans un second temps aux patients en acceptant le projet et les objectifs. À cette prise en charge, est associé un bilan en ergothérapie, en orthophonie et une évaluation neuropsychologique permettant d’y associer une prise en charge plus spécifique en fonction du bilan des déficiences. La réalisation des explorations fonctionnelles instrumentalisées nécessite une capacité de déambulation sans aide technique sur plus de 10 m et le maintien de la station debout bipodale pendant une minute.

2.2.2. Méthodologie d’évaluation

2.2.2.1. Évaluation clinique. L’interrogatoire a porté sur l’évaluation par le patient de son périmètre de marche et sur la fréquence des chutes au cours de l’année précédente.

L’équilibre a été évalué cliniquement à partir de trois échelles. L’échelle de berg de Berg et al. [3] comprend l’évaluation chiffrée de 14 tâches réalisées en conditions statique ou dynamique. Le Functional Reach Test (FRT) mesure le déplacement de la main, bras tendu à l’horizontal, lors du passage de la position debout à la position penchée en avant. Le Timed Up and Go (TUG) mesure le temps de réalisation d’une épreuve comportant le lever d’une chaise, la marche jusqu’à un mur situé à 3 m le demi-tour et le passage debout-assis. Ces trois échelles sont couramment utilisées en pratique neurologique et dans le cadre des chutes des personnes âgées.

2.2.2.2. Évaluations instrumentales

La méthodologie d’évaluation des paramètres objectifs de marche et d’équilibre était celle que notre équipe avait antérieurement utilisée pour évaluer le déterminants moteurs de la marche chez des patients atteints de sclérose en plaques et qui avait prouvé sa sensibilité au changement au terme d’un programme de rééducation spécifique de ces patients [5]. Afin d’éviter tout état de fatigue susceptible d’avoir des répercussions biomécaniques, les évaluations ont été réalisées dans un ordre correspondant à une sollicitation.
cardiovasculaire croissante (évaluation de l’équilibre, de la
marche puis de la force musculaire) avec un intervalle de dix
minutes entre chaque épreuve. La durée de passation des
différents tests était de 75 minutes incluant des temps de repos.

2.2.2.2.1. Paramètres d’équilibre. L’évaluation de l’équi-
libre en condition statique est réalisée à l’aide d’une plateforme de
stabilométrie (Satel, Blagnac, France) recueillant les forces
d’appui au sol pendant une tâche de maintien de l’équilibre de
51 secondes. L’examen était réalisé successivement en situa-
tion d’ouverture et de fermeture des yeux, sur sol dur puis sur
mousse de 4 cm d’épaisseur soit quatre conditions expé-
rimentales. La surface du stabilogramme a été retenue comme
paramètre pertinent de l’équilibration dans les différentes
conditions.

2.2.2.2.2. Paramètres de marche. Le locomètre® (Satel)
conçu par Bessou et al. [4] permet l’analyse des paramètres
spatiotemporels de la marche. Le principe de cette méthode
repose sur l’enregistrement du déplacement longitudinal de
chaque pied au cours d’un parcours de marche. Le déplacement de
chacun pied est transmis, par un fil inextensible, à un capteur
optique. Le fil est maintenu en tension par un moteur électrique
qui exerce une force de rappel dont la tension mécanique est
maintenue constante par asservissement électronique. Après
avoir donné le départ, le patient a pour objectif de marcher sur
une distance d’environ 7 m sur une surface plane sans obstacle.
Les paramètres retenus pour notre étude sont la vitesse de
marche, la cadence et la longueur du pas. Un premier essai est
réalisé pour familiariser le patient, puis deux enregistrements
sont effectués dans les conditions dites de vitesse spontanée
et rapide.

2.2.2.2.3. Évaluation de la force musculaire. La mesure
de la force musculaire en isocinétisme est un des outils
proposés pour quantifier dans les conditions dynamiques les
deficits objectivés dans les pathologies neurologiques ; cet outil
a déjà été utilisé dans le cas de la dystrophie myotonique [2]. Il
offre l’avantage de la sensibilité au changement qui est
supérieure au testing manuel pour des déficits modérés (côtes
manuellement à 4 ou 5) et a montré une corrélation aux
paramètres de marche [16] contrairement à l’évaluation
isométrique. L’examen, effectué en position assise sur un
dynamomètre isocinétique Cybex Norm® , consiste en la
réalisation, après échauffement, d’une série de cinq mouve-
ments de flexion-extension de genou à la vitesse de 60
par seconde. Cette vitesse lente imposée permet une meilleure
expression du muscle déficitaire [7].

2.2.3. Le programme de rééducation
Il comportait 15 séances de prise en charge réparties sur six
semaines. La prise en charge relevait d’une équipe pluridisci-
plinaire à raison de deux à trois séances hebdomadaires de
kinésithérapie et d’ergothérapie associées suivant les cas à une
prise en charge en orthophonie ou par une psychologue ; ces
séances étant adaptées à la fatigabilité et au degré d’autonomie
du patient.

La rééducation comprenait des exercices d’étirement en cas
d’enraidissement, un travail de l’équilibre, du renforcement
musculaire et un travail d’endurance, chaque séance compor-
tant environ deux heures de rééducation individuelle.

L’équilibre était travaillé en conditions statiques et
dynamiques, sur plateau instable et dans un couloir de marche
parsemé d’obstacles en situation de simple et double tâche (port
d’un verre rempli d’eau, exercice de comptage).

Le renforcement musculaire faisait appel à du travail
musculaire au niveau des genoux sur dynamomètre isociné-
tique. Les séances comportaient une succession de cinq séries
de dix contractions contre résistance à vitesses variables de 60 à
180 degrés par seconde.

L’endurance était travaillée sur tapis roulant de marche :
séance de 20 minutes à vitesse adaptée à 60 % de la fréquence
cardiaque maximale (210 – âge).

Une prise en charge rééducative du rachis et des membres
supérieurs était associée à cette rééducation locomotrice
suivant le bilan initial réalisé mais ne sera pas développée ici.

2.3. Analyse statistique

Elle a porté sur la comparaison des valeurs relevées lors des
mesures quantitatives avant et après rééducation. Le traitement
des données a été réalisé à l’aide du logiciel Stat-View avec
utilisation du test Anova pour mesures répétées en choisissant
comme seuil de significativité \(p < 0,05 \). Les valeurs recueillies
lors de l’évaluation instrumentale réalisée dans un groupe de
sujets sains appareillés en âge et en sexe ont été rapportées à
titre de comparaison.

2.4. Résultats

2.4.1. La population

La population se composait de 20 sujets, 13 hommes pour
sept femmes, âgés en moyenne de 51 ans (extrêmes de 32 à
69 ans).

2.4.2. L’équilibre

Le recueil de la fréquence des chutes chez ces patients faisait
apparaître un taux moyen de 1.5 chutes par mois (extrêmes de
deux par semaine à une par an).

Lors de l’évaluation initiale, les tests cliniques (Tableau 1)
faisaient apparaître une diminution des capacités d’équilibration
mesurées par l’échelle de Berg (44 pour une valeur normale
to 56), le FRT (11 cm pour une valeur normale supérieure à
25 cm) et le TUG (12 secondes pour une valeur normale
inférieure à neuf secondes).

L’équilibre mesuré sur plateforme (Tableau 2) se traduisait
par un élargissement de la surface du stabilogramme les yeux
ouverts à 566 (426) mm², soit très au-dessus des normes des
sujets sains (moyenne : 91 mm², IC : 39–210 mm²).

La mesure de l’équilibre les YF n’a été possible que chez
13 sujets sur les 20. La valeur moyenne de la surface du
stabilogramme de ces patients les YF était de 757 mm²
(moyenne des sujets sains : 225 mm², IC : 79–638 mm²).

La mesure de l’équilibre sur mousse les yeux ouverts n’a été
possible que chez sept sujets et les yeux fermés (YF) que chez
un seul.
Après rééducation, il existait une amélioration significative de l’équilibre appréciée par les tests cliniques. Le gain moyen était de 3,75 points sur l’échelle de Berg, 4,55 cm sur le FRT et 2,5 secondes sur le TUG.

Le nombre de patients ayant réussi les tests instrumentaux est passé pour le test sur sol dur les YF de 13 à 15, sur mousse les yeux ouverts de sept à 16 et sur mousse les YF d’un à six. En ne tenant compte que des patients initialement capables d’effectuer les trois tests, aucune modification significative n’a été retrouvée sur les valeurs moyennes de la surface du stabilogramme dans les différentes conditions expérimentales.

2.4.3. La locomotion

Les patients inclus dans cette étude utilisaient une aide technique dans huit cas sur 20. Leur périmètre de marche était évalué en moyenne à 1437 m (extrêmes : 50–6000 m). Aucune différence significative n’a été retrouvée après rééducation.

Concernant les paramètres de marche (Tableau 3), on a constaté une diminution importante de la vitesse de marche spontanée qui est en moyenne de 2,79 km/h correspondant à une diminution conjointe de la cadence et de la longueur d’enjambée. Une réduction de la vitesse rapide a également été observée.

Après rééducation, on n’a observé aucune amélioration des paramètres de la vitesse de marche spontanée mais une augmentation de 6 % de la vitesse de marche rapide (qui passe de 3,84 à 4,08 km/h, p < 0,05), par tendance à l’augmentation de la cadence (non significative) sans augmentation de la longueur d’enjambée.

2.4.4. La force musculaire

L’analyse de la force musculaire du couple extenseur/fleureur du genou en isocinésisme en concentrique à la vitesse de 60° par seconde, (exprimée en Newton mètre) a tenu compte de la possibilité d’une asymétrie du déficit. Ainsi, on nomme Qmax le plus fort quadriceps (Q) et Qmin le plus faible, IJMax les ischiojambiers (IJ) les plus forts et IJmin les plus faibles.

Les mesures effectuées avant rééducation (Tableau 4) chez ces 20 sujets mettaient en évidence une diminution du moment maximum en concentrique des Q et des IJ de ces patients. Les ratios IJ/Q étaient de 0,67 et 0,68 soit une valeur normale.

Après rééducation, on observait une amélioration significative du moment maximum des Q du côté le plus faible (9/C6 12 Nm, p < 0,01) et des IJ (IJMax : et IJMin : 12/C6 7e t 11/C6 10 Nm respectivement, p < 0,001) sans amélioration du Q le plus fort. Les ratios étaient respectivement de 0,85 et 0,86.

2.4.5. Corrélations entre les différentes variables

L’analyse statistique (étude de corrélation par coefficient de Spearman) ne met en évidence aucune corrélation significative entre l’amélioration des paramètres de force musculaire et les paramètres cliniques d’équilibre d’une part ou la vitesse de marche rapide d’autre part.

Tableau 1

<table>
<thead>
<tr>
<th>Test</th>
<th>Avant</th>
<th>Après</th>
<th>Delta</th>
<th>p</th>
<th>F</th>
<th>Normes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS</td>
<td>44,35 (9,14)</td>
<td>48,1 (9,76)</td>
<td>3,75 (3,55)</td>
<td>< 0,001</td>
<td>22,28</td>
<td>56</td>
</tr>
<tr>
<td>FRT</td>
<td>11 (8,6)</td>
<td>15,57 (10)</td>
<td>4,55 (6,71)</td>
<td>< 0,01</td>
<td>9,18</td>
<td>> 25</td>
</tr>
<tr>
<td>TUG</td>
<td>12,05 (7,55)</td>
<td>9,52 (4,03)</td>
<td>2,52 (4,88)</td>
<td>< 0,05</td>
<td>5,09</td>
<td>< 9</td>
</tr>
</tbody>
</table>

BBS : Berg Balance Scale ; FRT : Functional Reach Test ; TUG : Timed up and Go test.

Tableau 2

<table>
<thead>
<tr>
<th>Test</th>
<th>Avant</th>
<th>Après</th>
<th>Delta</th>
<th>p</th>
<th>F</th>
<th>CTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>YO sol dur</td>
<td>566 (426)</td>
<td>525 (435)</td>
<td>41 (418)</td>
<td>NS</td>
<td>0,17</td>
<td>155 (60)</td>
</tr>
<tr>
<td>YF sol dur</td>
<td>757 (659)</td>
<td>729 (675)</td>
<td>28 (432)</td>
<td>NS</td>
<td>0,025</td>
<td>310 (115)</td>
</tr>
<tr>
<td>YO mousse</td>
<td>2286 (1609)</td>
<td>1847 (2127)</td>
<td>439 (1243)</td>
<td>NS</td>
<td>1,84</td>
<td>325 (155)</td>
</tr>
</tbody>
</table>

CTL : valeurs de référence pour une population comparable en sexe et en âge.

Tableau 3
Évaluation des paramètres de marche sur Locomètre® : valeurs moyennes (écart-types). Test Anova pour mesures répétées avant et après rééducation.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Avant</th>
<th>Après</th>
<th>Delta</th>
<th>p</th>
<th>F</th>
<th>CTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitesse lente</td>
<td>2,79 (0,75)</td>
<td>2,88 (0,76)</td>
<td>0,09 (0,48)</td>
<td>NS</td>
<td>0,64</td>
<td>4,13 (0,83)</td>
</tr>
<tr>
<td>Cadence</td>
<td>98 (12)</td>
<td>100 (12)</td>
<td>2 (6)</td>
<td>NS</td>
<td>1,3</td>
<td>112 (17)</td>
</tr>
<tr>
<td>Enjambée</td>
<td>0,95 (19)</td>
<td>0,97 (19)</td>
<td>0,02 (0,1)</td>
<td>NS</td>
<td>0,38</td>
<td>1,14 (0,18)</td>
</tr>
<tr>
<td>Vitesse rapide</td>
<td>3,84 (1,02)</td>
<td>4,08 (1,07)</td>
<td>0,25 (0,48)</td>
<td>< 0,05</td>
<td>4,94</td>
<td>6,38 (1,29)</td>
</tr>
<tr>
<td>Cadence</td>
<td>110 (15)</td>
<td>115 (18)</td>
<td>5 (13)</td>
<td>NS</td>
<td>3,12</td>
<td>139 (14)</td>
</tr>
<tr>
<td>Enjambée</td>
<td>1,14 (0,22)</td>
<td>1,14 (0,23)</td>
<td>0 (0,1)</td>
<td>NS</td>
<td>0,02</td>
<td>150 (0,18)</td>
</tr>
</tbody>
</table>

CTL : valeurs de référence pour une population comparable en sexe et en âge.
2.5. Discussion

Nous présentons ici les premiers résultats d’une étude évaluant les déficiences motrices et posturolocomotrices de patients chuteurs atteints de la maladie de Steinert. Parmi les résultats de cette étude, il convient de mettre en avant la déficience musculaire marquée des stabilisateurs de genou (Q et IJ) associée à une instabilité mesurée en stabilométrie et une diminution de la vitesse de marche.

Dans la maladie de Steinert, la littérature ne retrouve que peu d’études préalables concernant l’évaluation posturale et aucune n’a rapporté l’association de paramètres objectifs de déficience et de fonction en conditions statique et dynamique. Chez des patients atteints d’une affection voisine, la myotonia congenita, Baumann et al. [2] ont bien mis en évidence une diminution du moment maximum du Q de 30 Nm mesuré à 60° par seconde, par rapport à un groupe témoin, sans préciser les résultats sur les antagonistes. Le premier lien objectif entre déficience et incapacité fonctionnelle dans la maladie de Steinert a été établi par Lindeman et al. [14] en mettant en évidence une influence de la déficience quadricipitale (mesurée sur dynamomètre isocinétique à 120° par seconde) dans la baisse de performance tâches chronométrées de descente des escaliers et de marche à vitesse spontanée avec respectivement un coefficient de détermination de 0,73 et 0,56.

Plus récemment, Wiles et al. [23] se sont intéressés aux chutes chez des patients atteints de la maladie de Steinert en enregistrant de manière continue pendant une semaine des paramètres de marche à l’aide d’un système embarqué. L’ensemble des événements intercurrents survenant au cours des activités dynamiques ainsi que les chutes étaient comptabilisées et les résultats ont été comparés à ceux d’un groupe de sujets sains permettant de constater un plus grand nombre de chute chez ces patients pour une moindre activité sans pouvoir en déterminer l’origine. Ces résultats évoquent ceux des sujets âgés chuteurs, dont le seuil prédicatif mesuré par l’échelle de Berg est de 44 sur 56, voisin de la valeur moyenne de notre série [3].

La seconde partie des résultats concerne l’amélioration des déficiences de nos patients au terme du protocole de rééducation proposé. En l’absence de connaissance de la physiopathologie des chutes chez ces patients, il n’y a pas de procédure validée de prise en charge de l’instabilité mais quelques auteurs se sont intéressés à des programmes d’entraînement sans fatigue avec des résultats contradictoires. En effet, si plusieurs équipes ont jugé efficace le renforcement musculaire sous-maximal [1,21], Lindeman et al. [13] ne retrouvent aucun bénéfice d’un programme de renforcement musculaire des membres inférieurs sur 24 semaines dans la seule étude randomisée, contrôlée, concernant 33 patients, que le critère de jugement soit analytique (pic de force des Q et IJ en isocinétique, temps de contraction isométrique) ou fonctionnel (test de montée des marches). Cependant, aucune de ces études n’évalua la probable nécessité d’un travail fonctionnel renforçant l’action de l’ensemble des structures non lésées par la maladie intervenant dans la gestion de l’équilibre. Seuls Orngreen et al. [17] rappellent l’utilité d’un entraînement aérobie. En effet, après 12 semaines d’exercices quotidiens sur cycloergomètre, ces auteurs ont mis en évidence, chez 12 patients, un gain de capacité cardiaque (V̇O₂max) et de qualité de vie (questionnaire SF36) sans majoration des enzymes musculaires. Les auteurs précisent cependant le défaut d’observance au long terme de ce type de traitement.

Dans notre étude, le gain porte sur l’amélioration homogène des tests cliniques d’équilibration, sur l’augmentation de la vitesse de marche rapide ainsi que sur la force musculaire à l’exception des Q évalués du côté le plus fort.

L’amélioration des tests de force musculaire va à l’encontre des résultats de Lindeman et al. [13] malgré des valeurs initiales voisines mesurées tant au niveau des Q que des IJ. L’augmentation de la force musculaire dans notre étude peut tenir à deux facteurs. Tout d’abord, une rééducation réalisée en présence du kinésithérapeute et non pas une autorééducation supervisée à distance. L’importance des troubles cognitifs dans la maladie de Steinert rend en effet difficile le suivi de ces patients et leur compliance à une prise en charge comme cela a été souligné par Orngreen et al. [17]. Une sollicitation répétée par le kinésithérapeute a été nécessaire tout au long de cette prise en charge chez ces patients qui avaient été sélectionnés sur leur volonté de se déplacer pour réaliser la rééducation. Le choix d’une population plus motivée peut expliquer également ce résultat de même qu’une rééducation dynamique avec biofeedback en temps réel tel que l’autorise l’outil isocinétique et permet de motiver le patient par le suivi de l’évolution de ses résultats.

L’amélioration des capacités d’équilibration est mise en évidence par un résultat homogène dans les tests cliniques et une augmentation de la faisabilité des tests instrumentaux les plus complexes. Compte tenu de la dispersion des résultats, l’amélioration des paramètres d’équilibration n’atteint pas de valeur significative et ne peut être recommandée comme critère.
de jugement dans cette pathologie. Il est à noter l’importance des contributions sensorielles dans le contrôle de l’équilibre des Steinert, ce qui n’avait pas été rapporté jusqu’alors. Après rééducation, l’augmentation des capacités d’équilibration des YF ou sur mousse traduit une diminution respective du poids des afférences visuelles et proprioceptives, permettant à certains patients de s’équilibrer les YF sur mousse, ce qui est reconnu comme un des tests les plus pertinents pour l’évaluation du risque de chute [15].

L’amélioration de la vitesse rapide de marche correspond selon nos résultats à une tendance à l’augmentation de la cadence sans augmentation de la longueur d’enjambée. Il s’agit peut-être là de la conséquence de l’amélioration de l’équilibre sur la marche, les patients décrivant une sensation de plus grande stabilité en conditions dynamiques. Le programme d’endurance proposé dans notre protocole est cependant probablement insuffisant pour améliorer le périmètre de marche qui n’a pas été modifié au terme de notre prise en charge.

La biomécanique des chutes dans la maladie de Steinert repose actuellement sur un grand nombre d’hypothèses physiopathologiques non établies que certains patients décrivent en consultation. Ainsi, sont rapportés fréquemment un accrochage d’un pied sur un obstacle et dans une moindre mesure un effondrement des patients sur eux-mêmes. Ces deux tableaux évoquent respectivement une déficience des releveurs du pied associée à un degré variable à une raideur du triceps sural limitant la flexion dorsale de cheville et un défaut de verrouillage actif des genoux par atteinte du Q. Cependant, notre étude n’apporte pas d’argument pour une corrélation entre l’amélioration des troubles de l’équilibre et de la marche et le gain en force musculaire, suggérant d’autres hypothèses.

Si ces éléments semblent être le plus souvent responsables des troubles de l’équilibre et de chutes, d’autres hypothèses biomécaniques et physiopathologiques sont en effet envisageables. La plupart des chutes survenant en condition dynamique, la myotonie est susceptible de favoriser certains épisodes en s’exerçant sur des groupes musculaires antagonistes des éléments actifs clés de la marche, créant ainsi une situation de « blocage ». Nous ne disposons malheureusement pas d’instrument évaluant la myotonie en condition dynamique au niveau des membres inférieurs permettant d’argumenter cette hypothèse.

L’association de troubles cognitifs, voire d’une grande fatigue, qui d’après Kalkman et al. [12] concerne les trois quarts des patients, peut également retentir sur la concentration et la qualité de marche. Cela peut expliquer qu’au-delà du renforcement analytique des muscles et du travail des capacités d’équilibration sollicitant des compensations sensorielles multiples, le programme de rééducation proposé à nos patients peuvent contribuer à leur amélioration par une meilleure connaissance de leurs déficiences et une prise en charge plus adaptée des processus de compensation alors qu’il existait dans certains cas à la phase initiale une difficulté de reconnaissance voir un déni de leurs déficiences. Une étude récente a mis en évidence l’amélioration des troubles de l’équilibre après leur simple évaluation en dehors de toute rééducation [10], témoignant ainsi de l’importance des phénomènes cognitifs dans ce domaine. La prise en charge multidisciplinaire régulière de ces patients semble être le gage de l’amélioration des paramètres que nous avons évalué dans cette étude.

Il n’en reste pas moins qu’au-delà des résultats immédiatement favorables de cette étude, plusieurs questions restent à approfondir. Si les tests utilisés dans cette étude témoignent d’une amélioration significative de certains paramètres, leur pertinence clinique demeure incertaine dans la mesure où le seuil cliniquement perceptible des gains sur la force, l’équilibre et la marche n’a pas été évalué dans cette population. Par ailleurs, le devenir fonctionnel de ces patients reste incertain.

Outre l’évolution naturelle de la maladie, la transposition des résultats dans la vie quotidienne et leur maintien à distance reste hypothétique et devra faire l’objet d’une étude contrôlée incluant une évaluation écologique des capacités d’équilibration et de marche à domicile. La prise en compte de facteurs neuropsychologiques devrait permettre de nous éclairer encore mieux concernant le mécanisme des troubles de l’équilibre et de la marche chez ces patients.

2.6. Conclusion

Cette étude décrit l’importance des déficiences posturolo-comotrices mesurables dans la myopathie de Steinert et apporte pour la première fois des arguments en faveur du caractère bénéfique d’une rééducation des troubles de la marche et de l’équilibre dans cette affection.

Ces résultats ne sont acquis que pour une population sélectionnée de patients au terme d’une rééducation intensive réalisée en milieu hospitalier et dont les résultats sont évalués à court terme.

La dissociation entre gains de force musculaire et gains dans les capacités d’équilibration et de marche fait apparaître le caractère multiple de cette rééducation et interroge sur la physiopathologie des troubles observés dans la myopathie de Steinert.

S’ils doivent nous inciter à réévaluer nos recommandations quant à la rééducation dans le cadre des myopathies, ces résultats demandent à être confirmés par une étude contrôlée avec évaluation des seuils cliniquement pertinents et un suivi mesurant à distance le bien fondé de cette prise en charge ainsi que son retentissement sur la qualité de vie des ces patients.

Conflit d’intérêt

L’auteur n’a aucun conflit d’intérêts à déclarer.

Remerciements

Nous remercions l’équipe des neurologues du centre de références des maladies neuromusculaires rares de l’hôpital de la Salpêtrière (en particulier, les Pr Eymard et Dr Laforet) pour la confiance qu’ils nous ont accordée dans la prise en charge de leurs patients, ainsi que l’équipe de kinésithérapeutes (X. Lobet, D. Delorme, P. Stephan) qui a participé à l’élaboration et l’exécution du programme de rééducation.
References

