Proximal tibial derotation osteotomy for torsional tibial deformities generating patello-femoral disorders

N. Fouillerona,b,*, E. Marchettia,b, G. Autissiera,b, F. Gougeonc, H. Migauda,b, J. Girarda,b

a North France Lille University, 59000 Lille, France
b Lille Teaching Medical Center, 59000 Lille, France
c North Knee Institute, 122, rue de la Louvière, 59000 Lille, France

Accepted: 27 April 2010

KEYWORDS
Patellofemoral pain syndrome; Anterior knee pain; Patellar instability; Excessive tibial torsion; Tibial malrotation; Derotation tibial osteotomy; Torsional deformities

Summary

Introduction: Torsional abnormalities of the leg may cause instability and pain in the patellofemoral joint. Although derotation osteotomies seem logical to address these conditions, there are very few surgical results reported in the literature.

Hypothesis: Isolated tibial derotation osteotomies relieve patellofemoral pain and instability even in the event of combined femoral and tibial torsion abnormalities.

Aim: Test this hypothesis in a retrospective and continuous series of thirty-six tibial derotation osteotomies and define the factors of success and failure.

Patients and methods: Thirty-six derotation osteotomies of the proximal tibial metaphysis were performed between 1995 and 2006 in 29 patients (five men and 24 women, an average of 26.5 years old ± 7.4 (18–44)) followed-up for a mean 4.7 years. There was confirmed patellar instability in five knees, and patellofemoral pain without instability in 31. A proximal metaphyseal osteotomy was performed to correct excessive external tibial rotation as well as to recenter the tibial tubercle after anterior tibial cortex elevation. All patients were followed-up and the clinical data were analysed according to criteria from the Lille score [specifically designed for patellofemoral joints (100 point score)] and the IKS score. All patients had a preoperative radiological evaluation [(including measurement of torsion abnormalities in 32 cases by computed tomodensitometry (CT scan))]. The mean preoperative external tibial torsion measured on CT scan was 36.2° ± 9.48 (26–51°) and the mean femoral anteverision was 19.4° ± 9.5 (8–36°).

Results: Twenty-seven patients (94%) were satisfied or very satisfied. The Lille score increased from 54.8 ± 16.9 (30–92) preoperatively to 85.2 ± 14.2 (36–100) at follow-up. The mean IKS

* Corresponding author. Orthopaedic Unit, Roger Salengro Hospital, Lille Regional Hospital Center, avenue Oscar-Lambret, 59045 Lille cedex, France.
E-mail address: nicolas.fouilleron@chru-lille.fr (N. Fouilleron).

1877-0568/$ – see front matter © 2010 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.otsr.2010.04.008
knee scores and function increased from 56 ± 14.8 (45–94) to 94 ± 12.1 (60–100) and from 71 ± 18.4 (30–100)–96 ± 11.9 (50–100). Patellofemoral dislocations did not occur in any of the five cases with instability. Mean derotation was 25° measured with a mean tibial torsion measured clinically at follow-up $8.6^\circ \pm 7.2$ (0–30). Two reoperations were necessary, (one knee manipulation under general anesthesia, and in another the fibular fibrous arch had to be released). One case of regressive palsy of the common fibular nerve was observed. Union of the osteotomy was obtained in all patients.

Discussion: This series is one of the largest series published to date. Isolated medialization of the anterior tibial tubercle only partially corrects these morphological abnormalities. In cases of associated excessive femoral anteversion we recommend surgery to the tibia alone because results were comparable in groups with and without excessive anteversion of the femoral neck.

Level of evidence: level IV. Retrospective study.

© 2010 Elsevier Masson SAS. All rights reserved.

Introduction

The association of a patellofemoral syndrome with excessive external tibial torsion is a rare condition, which is diagnosed clinically. These torsional abnormalities are more frequently found in paediatric patients, without necessarily causing dysfunction between the patella and the femoral trochlea [1,2].

Excessive tibial torsion can be isolated or associated with, and secondary to, excessive femoral anteversion, and it is well known that external tibial torsion of more than 40° is pathological, while normal torsion is approximately 20° [2,3]. During growth, tibial torsion may increase while femoral anteversion normalises, resulting in lateral patellofemoral impingement. Our working hypothesis was that isolated tibial derotation osteotomies could relieve patellofemoral pain and instability even in cases of combined femorotibial rotation abnormalities. We tested this hypothesis in a retrospective series of 36 tibial derotation osteotomies performed in cases with confirmed instability or a patellofemoral pain syndrome. Our secondary goals included defining the functional results, the rate of complications, and finally to try to determine the factors of success or failure.

Patients and methods

Patients

The cohort included 36 knees in 29 patients who underwent surgery between May 1995 and December 2006. None of the patients were lost to follow-up or died. There were five men (17.2%) and 24 women (82.8%) or a ratio of 4.8. The mean age at surgery was 26.5 years old ± 7.4 (17–44). Surgery was performed on the left 18 times, on the right 18 times and surgery was bilateral in seven patients. Seventeen patients (58.6%) had never had knee surgery. Seven patients (24.1%) had a history of surgery for the extensor apparatus (three medializations of the tibial tubercle, two advancements of the tibial tubercle by the Maquet technique and two lateral patellar retinaculum releases), but these procedures had not relieved the patients, and tibial torsional abnormalities persisted.

Inclusion criteria

Patients were asked to perform physical therapy including stretching of the anterior and posterior muscle chains and analytical muscular strengthening based on the results of an isokinetic muscle evaluation. Tibial derotation osteotomy was indicated if the painful and/or unstable patellofemoral syndrome was associated with least 20° of torsion, measured clinically and usually confirmed on computed tomodesitometry (CT scan). The indication was formal in all patients with more than 30° of torsion.

Equal range of motion of the hip in rotation (internal = external rotation) and isolated excessive external tibial rotation had to be present for this surgical indication. Any associated abnormalities of the femoral trochlea or of patellar height could also be corrected during the procedure. All patients who underwent tibial derotation in our department were included in this retrospective study.

Surgical procedure

The torsional abnormality was located between the tibial plateau and the anterior tibial tubercle [4], thus the osteotomy cut was made on the upper metaphysis after elevating the tubercle to maintain its continuity. The surgical approach was lateral, oblique below and in front, beginning at the fibular head and continuing towards the tubercle so the common fibular nerve was protected and the osteotomy of the fibular neck could be performed.

By elevating the tubercle, an osteotomy cut could be made that was horizontal and perpendicular to the tibial diaphysis, and two pins could be placed along the cut with the help of a protractor so that the amplitude of derotation could be controlled. When valgus correction was necessary correction of the malalignment in the frontal plane was obtained after derotation by performing a lateral wedge resection. The aim was to obtain a neutral mechanical axis of the lower limb. The osteotomy was fixed with two Blount staples and the tibial plate was repositioned with possible medialization, then fixed with two AO compression screws (Figs. 1 and 2). If necessary an additional plate was used to improve stability (Fig. 3).
Weight bearing was delayed until 6 weeks after surgery and physical rehabilitation focused on recovery of range of motion.

Evaluation methods

Follow-up evaluation was performed by one observer who had not performed surgery. The clinical results were evaluated with the Lille score for patellofemoral joints whose value goes from 0 points (the worst result) to 100 points (the best result) [5]. Knee and general function was evaluated by the IKS score [6]. Each patient was asked about their level of satisfaction during the follow-up consultation. Patellofemoral pain, articular range of motion, and measurement of external tibial torsion at 90° of knee flexion were evaluated during clinical follow-up examination.

Preoperative and postoperative radiographic evaluation included a standing view of the leg, a strict profile view to measure trochlear dysplasia and patellar height according to the index by Caton et al. [7], a patellofemoral tangential view at 30° of flexion and a 30° Schuss view. CT Scan was used preoperatively in 32 cases to evaluate femoral and tibial torsion [8,9] as well as the anterior tibial tubercle to trochlear groove distance (TT-TG) [10]. Medial tibiofemoral osteoarthritis was quantified according to Ahlbach’s classification [11].

The Chi² test and the Fischer exact test were used for qualitative variables, the Wilcoxon and Student T-tests were used in other cases. A *p*-value of .05 was considered significant.

The series

Thirty-six knees were reviewed in twenty nine patients a mean 55 months after surgery for follow-up (12 months—14.5 years). None of the patients were lost to follow-up. The main results in the series are presented in Table 1. Mean preoperative tibial torsion was 33.8 ± 10.2° (20—60°). The mean CT scan measurement was 36.2 ± 9.5° (26—60°). Measurement of TT-TG was performed 32 times,
Figure 3 Patient in whom repeated anterior tibial tubercle medialization had failed to relieve lateral patello-femoral dislocation resulting in a painful and unstable extensor mechanism (A). CT-scan showed excessive external torsion of the right tibia (33°) (B), which was treated by proximal tibial derotation osteotomy (C) fixed by staples and a bone plate as well as a screw to elevate the tibial tubercle (C). The Lille knee score increased from 36 preoperatively to 91 points (out of 100 points) at 5 years of follow-up.

Table 1 Main results.

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>Follow-up</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lille score</td>
<td>54.8</td>
<td>85.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Slight pain/no pain</td>
<td>5%</td>
<td>78%</td>
<td><0.001</td>
</tr>
<tr>
<td>Walks normally</td>
<td>11%</td>
<td>58%</td>
<td><0.001</td>
</tr>
<tr>
<td>Takes stairs normally</td>
<td>14%</td>
<td>61%</td>
<td><0.001</td>
</tr>
<tr>
<td>Tibial torsion</td>
<td>34°</td>
<td>8.6°</td>
<td><0.001</td>
</tr>
<tr>
<td>HKA angle</td>
<td>175°</td>
<td>179°</td>
<td>0.008</td>
</tr>
</tbody>
</table>

the mean value was 1.48 cm ± 0.39 (0.98–2.7 cm) and the preoperative CT Scan measurements showed a mean femoral anteversion of 19.4 ± 9.5° (8–36°). There were twenty-four cases with an excessive anteversion greater than 20°.

Thirty-one knees (86.1%) had pain without dislocation (pain syndrome), the five other knees were unstable with at least one case of confirmed patellar dislocation. In the preoperative evaluation only two knees (5.6%) had instability without pain while pain was moderate in 14 knees (38.9%), significant in 12 (33.3%) and severe in eight (22.2%).

In four other cases (11.4%) the symptoms did not result in any difficulty walking. Walking was impossible in one patient (2.8%). The symptoms did not prevent climbing stairs in five cases (14%). In the other cases, the patients described having moderate (22 knees or 61%) or severe (nine knees or 25%) difficulty climbing stairs.

Mean preoperative flexion was 144.2 ± 8.4° (125–150°). No flessum was observed preoperatively, while a mean recurvatum of 6.5 ± 6.4° was present in 18 knees (50%). The clinical presentation was therefore more often an excessively lax knee with recurvatum in half the cases.

Results

Complications

There were three complications requiring surgical revision in only two cases:

1) one case of deep venous thrombosis which was found to be secondary to compression by the fibular fibrous arch of the soleus muscle which required release;
2) early knee manipulation under general anesthesia because of insufficient recovery of flexion range of motion;
3) regressive paralysis of the common fibular nerve which resolved after six months.

Clinical results

Twenty-seven patients (94%) were satisfied or very satisfied at follow-up (Fig. 4). The functional results were significantly improved on the Lille score (Fig. 5), increasing from 54.8 ± 16.9 (30.92) to 85.2 ± 14.3 (36.100) (p < 0.001). Twenty-seven knees (75%) had good or very good results according to the Lille score. No statistical correlation was found between the type of patellofemoral syndrome (pain or instability), the age or the sex of the patient and the quality of results evaluated on the Lille score. The IKS score also improved significantly (p < 0.001), both the mean knee score which increased from 56 ± 14.8 (45.94) to 94 ± 12.1 (60,100), and the function score which increased from 71 ± 18.4 (30,100) to 96 ± 11.9 (50,100).

Mean postoperative tibial torsion measured at clinical follow-up was 8.6°, which was significantly different from the preoperative score (p < 0.001) with a mean decrease of 25.2°. No significant difference was found for the subjective index of satisfaction and functional results (patellofemoral

Figure 4 Patient’s satisfaction (n = 29 patients).
Derotation tibial osteotomy for torsional tibial deformities

Figure 5 Preoperative and postoperative Lille Knee score in (36 knees).

Figure 6 Preoperative and postoperative pain score (36 knees).

score and IKS) between cases with femoral anteverision of 20° or more and the others (p = 0.88).

Patellofemoral pain (Fig. 6) also improved significantly (p < 0.001): 95% of patients had moderate to severe pain preoperatively, while 78% of patients had slight or no pain at follow-up. All patellas were stable at follow-up and there was significant improvement in episodes of painful buckling (p < 0.001). Walking (Fig. 7) also improved significantly (p < 0.001): only four patients (13.8%) could walk normally in the preoperative evaluation compared to 21 patients (72%) at the post-operative follow-up. Also, only four patients (13.8%) could climb stairs normally in the preoperative eval-

Figure 7 Preoperative and post-operative ability to walk (36 knees).

Radiological results

Radiological results of the 36 cases showed a mean preoperative HKA angle of 175.7 ± 4.8° (162–187°). There were five valgus knees, three were normally aligned, and 28 varus knees (78%). Mechanical knee alignment was significantly improved: the mean HKA angle at follow-up was 179.2 ± 3.6° (176–185°) (p = 0.008).

In 28 cases, the trochlea was not dysplastic, dysplasia with dislocation (grade D of the new Dejour’s classification) was only identified in one trochlea [12] with only one case of previous patellofemoral dislocation. The four other knees presenting with recurrent patellar dislocation had type A trochlear dysplasia. The mean preoperative Caton index was 0.99 ± 0.15 (0.70–1.36) and none of the patients presented with patellofemoral osteoarthritis. Patellar height was not significantly different on post-operative follow-up according to the Caton index 0.97 ± 0.12 (0.67–1.3) (p = 0.59).
No statistical correlation was found between the preoperative (TT-TG) distance and good or poor clinical results. Two knees had preoperative osteoarthritic lesions with internal tibio-femoral wear (one grade I and one grade II). At postoperative follow-up two knees were grade I and one knee had advanced to grade III.

Discussion

Our 36 cases in 29 adult patients is the largest series published to date. A multicentric analysis performed in 1982 for the SOFCOT [13] symposium included 30 cases, which could be correctly analysed although no prognostic factors could be determined. Our experience suggests that the rarity of indications, rather than the technical difficulties, explains the limited number of published cases of tibial derotation osteotomies.

What to do about associated femoral torsion abnormalities?

In a SOFCOT multicenter study related to torsion abnormalities of the lower limb, Lerat and Raguet [13] suggested a different approach based on the use of CT scan to measure the index of cumulative torsions or ICT (tibial torsion—femoral torsion). Isolated internal tibial derotation was indicated when the index was above 35̊ and it could be associated with an external femoral derotation. When the index is low, below 20̊, but tibial and femoral torsion is high, it is therefore logical to treat both the tibia and the femur. Based on these latter criteria, which they considered to be severe, nine rather than 24 patients would have undergone surgery in this SOFCOT multicenter series. With the same criteria applied to our series only one knee out of the 32 in which the preoperative torsion index was measured would have been operated on. The indications for this procedure are more extensive in pediatric patients for functional or esthetical reasons, which allows for high or low osteotomies depending upon the associated frontal abnormalities. [14].

There may be combined femoral and tibial abnormalities in adults. All authors agree that double-level osteotomies are a difficult intervention, and some such as Cox [15], Fulkerson and Schutzer [16] recommend a single procedure. In our experience, which is supported by the results of our series, there was no difference in the satisfaction index, patellofemoral score or IKS score between patients with a femoral torsion above 20̊ and the others. This does not mean that a femoral malformation should be treated with tibial surgery, but in patients with two types of opposing excessive rotation, a patellofemoral syndrome can be successfully treated and patellar recentering can be successfully obtained by an isolated tibial derotation osteotomy procedure alone.

Is an isolated anterior tibial tubercle transposition enough?

Seven of the 36 knees in our series which included 86.1% of patients with a patellofemoral pain syndrome, had a prior history of surgery on the extensor apparatus which did not relieve symptoms, resulting in a persistent torsion abnormalities which had to be treated by tibial derotation osteotomy. Thus, in our opinion a derotation osteotomy is indispensable when tibial torsion is above 30̊. Derotation corrects the misalignment of the extensor mechanism by recentering the patella and repositioning the tubercle anatomically, thus improving the Q angle.

Because of the difficulty of osteotomies, certain authors such as Schoettle et al. [17] recommend surgery on the medial patellofemoral ligament alone for patellofemoral pain syndromes, which provides satisfactory results in patellofemoral pain 10 months after surgery. Meister and James [18] treated seven patients for patellar pain syndromes with proximal metaphyseal tibial derotation osteotomy with six good or very good subjective results and seven good or very good functional results 10 years after surgery. The mean correction was 20̊, while it was 25.2̊ in our series. This is the only series describing this procedure as an indication for patients with patellar pain syndrome alone.

In the unstable patellofemoral syndromes in our series, the five patellas were stabilised by simple derotation without medialization or trochleoplasty. The failures which occurred in the series by Cameron and Saha [19] show that simple medialization of the tibial tubercle is limited in patients with excessive external tibial torsion. In the same way, the SOFCOT multicenter series [13] reported nine unsuccessful tibial tubercle transfers out of 50 cases. Cameron and Saha [19] performed tibial derotation in 18 patients with excessive external torsion in whom former tibial tubercle transfrans had failed to correct patellar instability. The mean preoperative torsion was 40̊ (37—65̊). Out of the 17 patients who were followed up, 13 (76%) had results that were considered good and very good 25 months after surgery [19]. Age, sex, degree of tibial torsion, presence of femoral trochlear dysplasia and patellar height did not affect results. But the patients with less pre-operative pain had better results in the series [19]. This notion is even more true if instability is a dominant factor. Unlike in our series, Cameron and Saha [19] associated derotation and mobilisation of the anterior tibial tubercle by the Maquet technique when instability was associated with a painful patellar syndrome (five out of 17 cases). Maquet advancement of the anterior tibial tubercle was not used in our practice because it increases the lever arm on the patella, and was indicated in the past for the treatment of patellofemoral osteoarthritis [20].

The SOFCOT symposium series [13] in 1982 included 50 internal derotation osteotomies, but 11 cases could not be analysed either because the symptoms were not well defined, or because they were specific cases. Twenty-one osteotomies were performed on knees without a history of surgery for patellar instability with results that were similar to ours although the mean derotation was only 12̊ with a maximum of 20̊. Thus the results of these publications support the results of our series with good or very good results in more than 75% of patients with both pain syndrome and instability.

More recently, Paulos et al. [21] prospectively followed the outcomes of 12 patients who underwent derotation and 13 others who underwent patellar recentering by the Elmslie technique. These 25 patients had a preoperative tibial tor-
Derotation tibial osteotomy for torsional tibial deformities

The beneficial results more than 10 years after surgery of anterior tibial tubercle transpositions by the Elmslie technique have been known since 1979 [22]. Although the failures in these cases may be secondary to excess or insufficient correction, medial tibiofemoral stress after medialization of the anterior tibial tubercle could cause decompensation in a pre-existing varus knee. Thus in our series, 28 cases (78%) were varus knees with a mean preoperative alignment of 175.7° and this varus component was corrected by the osteotomy. Realignment of the leg was certainly decisive although it is not possible to definitely confirm that derotation was the only cause of this beneficial result.

Long term outcome, medial tibio-femoral osteoarthritis

The index of cumulative torsion has been used as a hypothesis by Duparc et al. [23] to explain the development of internal femoro-tibial osteoarthritis in association with frontal plane angle deformities – however the values used by this author were different than those used by Lerat and Raguet [13]. For high ICT’s (>20°) compensation of global leg alignment is obtained by internal rotation of the hip as well as by internal rotation of the femoro-tibial joint, based on the hypothesis that shear stress and the change in weight distribution on the tibial plateau frequently associated with varus can result in osteoarthritis. Low ICT’s (<10°) are associated with an increase in overall varus, while in ICT’s (10–20°), which includes most of the patients in our series, but also the only cases of osteoarthritis in our study – a balanced torsion profile is found and osteoarthritis is limited to frontal plane malalignments.

What to do with the fibula?

Unlike Lerat and Raguet [13], we systematically cut the fibula to obtain easy tibial correction; the fibula may be left intact in low tibial osteotomies, which are often performed in pediatric patients [24,25]. The limit of correction seems to be 30°; above this the risk of neurovascular complications increases significantly. [13].

The complications

With 8.3% of complications, our results are similar to those of the SOFCOT symposium and other published series. On the other hand, our results for common fibular nerve palsy were lower than that in the SOFCOT symposium series 23.3% [13]. Moreover, there were no cases of anterior tibial syndrome or arterial bifurcation damage in our series.

Analysis of results

The results of this study are encouraging with a high proportion of satisfied patients. Results were good for instability, pain, walking, climbing stairs, which are, for us, the main criteria to evaluate patellofemoral symptoms. These results support those observed in the literature. Despite 76% of good and very good results and 94% of satisfied or very satisfied patients, the low rate of patients who practiced sports again suggests that the expectations of these fairly young patients mainly involves simple daily activities such as walking, climbing stairs or light exercise. Aglietti et al. [26] have shown that results in knees that have former surgery are worse when a second procedure must be performed on the extensor apparatus. This was not confirmed by our study: seven of the patients in our study had prior surgery for realignment either of the soft tissues or by anterior tibial tubercle medialization, but the small size of our series and of this sub-group makes it impossible to confirm these results.

Conclusion

Our series of 36 cases in 29 adult patients is the most important series published on this entity to date. The results of tibial derotation osteotomy were satisfactory with 94% of satisfied patients and a significant improvement in the Lille patellofemoral score with 75% good or very good results. The technique described in this series results in a satisfactory rate of union and a low rate of complications. This procedure is performed after a morphological evaluation of the trochlea and measurement of leg torsion on CT Scan. Simple medialization of the tibial tubercle is not enough to correct a painful or unstable patellofemoral syndrome when it is associated with excessive external tibial torsion, which in our experience was limited to 30°. Alignment must be analyzed and the extent of correction must be verified. Moreover, we feel that in cases of associated excessive femoral anteversion, an isolated tibial procedure should be performed.

Conflict of interest

None.

References

