SCIENTIFIC EDITORIAL

Assessment of pulmonary hypertension during exercise: Ready for clinical prime time?

Évaluation de l’hypertension pulmonaire à l’exercice : prêt pour le « prime time » clinique?

Sylvestre Maréchauxa,*, Pierre-Vladimir Ennezatb,∗∗

a Cardiologie et explorations fonctionnelles cardiaques, groupement hospitalier de l’institut catholique de Lille, faculté libre de médecine de Lille, université catholique de Lille, 59020 Lille cedex, France
b Soins intensifs cardiologiques, CHRU de Lille, hôpital cardiologique, boulevard Pr.-J.-Leclerq, 59037 Lille cedex, France

Received 31 January 2011; accepted 31 January 2011
Available online 19 April 2011

Background

The development of pulmonary hypertension at rest in patients with heart failure, chronic obstructive pulmonary disease, interstitial lung disease, thrombo-embolic disease, connective tissue disease, sleep apnoea disorders or cardiac valve disease often signals progression of the disease and poor outcome [1,2]. According to Ohm’s law, pulmonary arterial blood flow (cardiac output), PCWP and PVR primarily determine the $P_{\text{AP\ mean}}$. $P_{\text{AP\ mean}} \geq 25 \text{mmHg}$ currently defines pulmonary hypertension; coexisting PCWP (or left atrial pressure or left ventricular end diastolic pressure) $\leq 15 \text{mmHg}$ indicates pulmonary arterial hypertension (PAH), whereas elevated PCWP indicates at least some degree of PHV. RHC remains the gold standard for pulmonary hypertension diagnosis. It also enables the evaluation of pulmonary vasoreactivity and oxygen saturation measurements. Because of its noninvasive nature, Doppler echocardiography is the screening tool of choice in patients who are suspected of having pulmonary hypertension. By adding the estimated right atrial pressure, the $P_{\text{AP\ syst}}$ may be estimated from the tricuspid regurgitant jet. In the absence of tricuspid regurgitation, pulmonary regurgitation may be used to derive P_{AP}. In patients with healthy and diseased pulmonary circulations, $P_{\text{AP\ syst}}$ closely correlates with $P_{\text{AP\ mean}}$ at rest and in different states of activity [3,4]. A $P_{\text{AP\ syst}}$ threshold of 36 mmHg is currently retained.

KEYWORDS
Exercise stress echocardiography; Pulmonary hypertension; Right heart catheterism

MOTS CLÉS
Échocardiographie de stress à l’effort ; Hypertension pulmonaire ; Cathétérisme cardiaque droit

Abbreviations:
ESE, exercise stress echocardiography; HFpEF, heart failure with preserved ejection fraction; LVEF, left ventricular ejection fraction; $P_{\text{AP\ mean}}$, mean pulmonary artery pressure; $P_{\text{AP\ syst}}$, pulmonary arterial systolic pressure; PCWP, pulmonary capillary wedge pressure; PHV, pulmonary venous hypertension; PVR, pulmonary vascular resistances; RHC, right-sided heart catheterization.

* Corresponding author. Services de cardiologie et explorations fonctionnelles cardiaques, GHICL, hôpital Saint-Philibert, rue du Grand-But, 59160 Lomme, France.
** Co-corresponding author. Soins intensifs cardiologiques, hôpital cardiologique, CHRU de Lille, boulevard Pr. J.-Leclerq, 59037 Lille cedex, France. Fax: +33 3 20 44 65 04.
E-mail addresses: sylvestre.marechaux@yahoo.fr (S. Maréchaux), ennezat@yahoo.com (P.-V. Ennezat).

1875-2136/S — see front matter © 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.acvd.2011.01.006
for the screening of pulmonary hypertension. Agreement between catheter and Doppler assessment of PAP highly depends on accurate recording of the tricuspid regurgitant jet and operator skill.

Pulmonary pressures are intrinsically dynamic with exercise, sleep, load conditions, high altitude, right ventricular performance or therapeutic interventions. Despite normal or near-normal PAPsyst at rest, dynamic exercise may unmask a large rise in PAPsyst that may be considered as a latent stage of pulmonary hypertension. Early therapeutic interventions at this stage might result in a more favourable outcome. Although challenging, ESE allows the noninvasive assessment of PAPsyst during exercise but head-to-head comparisons between Doppler derived PAPsyst and catheter measurements have seldom been performed [5]. Besides the difficulty in analysing tricuspid regurgitant velocity signals during ESE, the right atrial pressure based on inferior vena cava imaging has never been validated during exercise, when venous compliance is known to decrease [6]. It is worth noting that owing to the rapid return of PAP to baseline, Doppler measurements during recovery appear unreliable [7].

Healthy individuals

Physiologically, during dynamic exercise the high vascular compliance of the pulmonary circulation is such that a several-fold increase in pulmonary blood flow may be accommodated with small rise in PAP and fall in PVR [8]. Moreover, the relationships between PAPsyst and cardiac output or workload are highly linear using ESE. When log PAPmean is plotted as a function of log cardiac output, both takeoff and plateau patterns may be identified in healthy subjects [7]. In healthy individuals of various ages, Mahjoub et al. demonstrated that PAPsyst does not increase above 60 mmHg at low-level exercise [9]. Unlike resting PAPsyst, the rise in PAPsyst is largely influenced by age, and 50% of patients aged > 70 years have a PAPsyst ≥ 60 mmHg at maximal workload. Both age-related vascular stiffening and reduced compliance of left ventricular (LV) filling, which is reflected back on the pulmonary vascular bed, are likely to account for the pulmonary pressure response during exercise [10]. Thus, whereas a large exercise-induced rise in PAPsyst in a young patient should be considered as an abnormal response, interpretation of an increase in PAPsyst ≥ 60 mmHg at peak exercise in elderly patients with exertional dyspnoea or fatigue requires caution. It is noteworthy that well-trained athletes may experience a large increase in PAPsyst at high workload (tricuspid regurgitant maximal velocity ranging from 3.10 to 3.72 m/s in athletes vs 1.95 to 2.58 m/s in non-athletes) [11]. A large increase in blood flow probably influences the exercise PAP response in athletes [11]. Finally, using either RHC or ESE, age and workload achieved are key determinants of exercise PAPsyst, making it difficult to define normal PAP values during exercise [12].

Cardiac valvular disease

The usefulness of ESE in the management of cardiac valvular disease has been recently reviewed [13,14]. In patients with asymptomatic organic mitral regurgitation, Magne et al. found that peak PAPsyst > 60 mmHg is frequent (46%) during ESE and is mainly related to an exercise-induced increase in mitral regurgitation severity [15]. Importantly, exercise pulmonary hypertension (with a threshold of 56 mmHg) was a stronger predictor of 2-year symptom-free survival than resting PAPsyst, which is close to the 60 mmHg recommended by the American College of Cardiology/American Heart Association guidelines [16]. Despite the lack of prospective prognostic data, a threshold of 60 mmHg during exercise is also recommended by current guidelines in mitral stenosis; decreased mitral valve compliance during exercise correlates with exercise-induced pulmonary hypertension in this setting [17]. The significance of exercise-induced pulmonary hypertension in patients with asymptomatic aortic stenosis or regurgitation has not been specifically addressed. Last, owing to abnormal left ventricular function or residual pathology of the pulmonary vascular bed, exercise pulmonary hypertension should be considered when there is no significant relief of symptoms after valve replacement [18].

Systolic heart failure

Pulmonary hypertension is a frequent complication of both systolic and diastolic left ventricular dysfunction. In patients with heart failure and reduced LVEF, PAPmean often increases sharply during exercise, associated with a blunted increase in cardiac output [8] and a close correlation between PCWP and PAPmean at each level of exercise [19]. Interestingly, some patients with heart failure and reduced LVEF may experience a decrease in PAPmean during exercise [8]. Multiple intricate factors, including larger rise in functional mitral regurgitation volume during exercise, myocardial dyssynchrony or absence of left ventricular contractile reserve bolster exercise-induced pulmonary hypertension, while right ventricular failure hinders exercise-induced pulmonary hypertension [20,21]. A positive relationship between exercise pulmonary hypertension and adverse outcome has been found in patients with left ventricular systolic dysfunction and coronary artery disease [22], whereas a decrease in PAPsyst during exercise might identify a subset of heart failure patients with worse prognosis [23]. A multivariable approach, including assessment of right ventricular functional performance, is needed for a comprehensive interpretation of exercise PAP alteration in heart failure patients.

Heart failure with preserved ejection fraction

In clinical practice, significant exercise-induced PVH may be observed in the case of inducible ischaemia in patients with preserved LVEF at rest and exertional dyspnoea. In a large, heterogeneous population of patients with preserved LVEF referred for “diastolic” ESE, exercise-induced pulmonary hypertension (PAPsyst > 50 mmHg at 50 W) has been associated with increased left ventricular filling pressure at rest, older age, female sex, increased systolic blood pressure at rest, shorter exercise duration and lower exer-
Exercise pulmonary hypertension

Clinical implications

Comprehensive interpretation of PAP during exercise is required. Most studies reported PAP measurements only at peak exercise, thereby complicating the interpretation of an exercise-induced increase in PAP. A large increase in PAPsyst at low workload or high workload may not have the same clinical significance. The impact of ageing on exercise-induced pulmonary hypertension is key, as vascular compliance tends to decrease somewhat with age. A large exercise increase in PAPsyst in a 50-year-old patient with severe asymptomatic mitral regurgitation is likely to convey a poor outcome without surgery; the same finding in a 75-year-old patient with mild mitral regurgitation requires cautious interpretation. Of note, the proportions of patients reaching a PAPsyst of 60 mmHg at peak exercise were similar in the studies by Majhoub et al. and Magne et al., involving healthy controls and patients with organic mitral regurgitation, respectively; however, the workload achieved was lower in patients with mitral regurgitation [9,15]. The usefulness of exercise testing in systolic heart failure patients for assessing right ventricular performance and PAP prior to left ventricular assistance device might be tested. Testing of whether increased PAP during exercise is related to an increase in flow or in resistance using the ratio of pressure (tricuspid regurgitant velocity) to flow (time-velocity integral in the right ventricular outflow tract) is limited and deserves further investigation [40]. Last, whether ESE may help in the HFP EF working diagnosis deserves further studies, as noninvasive assessment of pulmonary venous pressure and PVR remains challenging.

Conclusions

Preliminary experience suggests that exercise testing provides additional information over resting variables in the evaluation and management of pulmonary hypertension in various conditions. However, no confirmed consensus exists with regard to which PAPsyst threshold is diagnostically relevant for exercise pulmonary hypertension. Moreover, whether ESE and exercise RHC are interchangeable remains uncertain. How the stress is performed — whether supine or upright cycle ergometry or arm weight exercise — is another issue. Assessment of PAPsyst during ESE is feasible but still difficult even in expert hands (obesity, hyperinflated lungs, trivial tricuspid regurgitation, etc.). The role of right atrial pressure may be underestimated in ESE. The knowledge of the multiple intricate factors that may dramatically influence the level of PAP during exercise is a prerequisite safeguard to ensure that studying the dynamism of PAP during exercise effectively improves therapeutic strategies for and prognosis of our patients.

Disclosure of interest

The authors have not supplied their declaration of conflict of interest.
References

peutic implications of pulmonary hypertension complicating
degenerative mitral regurgitation due to flail leaflet: a mul-
ticenter long-term international study. Eur Heart J 2011;32:
751—9.

management of valvular heart disease: The Task Force on the
Management of Valvular Heart Disease of the European Society

iou s empirical formula s for estimating mean pulmonary artery
pressure by using systolic pulmonary artery pressure in adults.

the components of pulmonary artery pressure remains const-
tant under all conditions in both health and disease. Chest

doppler ultrasound for noninvasive assessment of pulmonary
artery pressure during exercise in patients with chronic con-

[6] Sheriff DD, Augustyniak RA, O’Leary DS. Muscle chemoreflex-
induced increases in right atrial pressure. Am J Physiol

ography for the study of the pulmonary circulation. Eur Respir J

[8] Hickam JB, Cargill WH. Pulmonary arterial pressures in conges-

ary artery systolic pressure at rest and during exercise in normal

dynamic basis of exercise limitation in patients with heart
failure and normal ejection fraction. J Am Coll Cardiol
2010;56:855—63.

regurgitation velocity at rest and during exercise in normal
adult men: implications for the diagnosis of pulmonary hyper-

sure during rest and exercise in healthy subjects: a systematic

atrioventricular compliance on pulmonary artery pressure in
mitral stenosis: an exercise echocardiographic study. Circula-
tion 2000;102:2378—84.

atrioventricular compliance on pulmonary artery pressure in
mitral stenosis: an exercise echocardiographic study. Circula-
tion 2000;102:2378—84.

atrioventricular compliance on pulmonary artery pressure in
mitral stenosis: an exercise echocardiographic study. Circula-
tion 2000;102:2378—84.

[16] Magne J, Lancellotti P, Pierard LA. The emerging role of
echocardiographic diagnosis of early heart failure with preserved

[17] Lam CS, Roger VL, Rodeheffer RJ, et al. Pulmonary hyper-
tension in heart failure with preserved ejection fraction: a

hemodynamics before and after valve replacement: a combined

response of the pulmonary circulation in patients with heart
failure and pulmonary vascular disease. Circulation

lates of exercise induced pulmonary hypertension in patients
with chronic heart failure due to left ventricular systolic dys-

of pulmonary artery hypertension at rest and during exercise

[22] Lancellotti P, Gerard PL, Pierard LA. Long-term outcome of
patients with heart failure and dynamic functional mitral regur-
itation. Eur Heart J 2005;26:1528—32.

enhance the prognostic value of Doppler echocardiography in
patients with left ventricular systolic dysfunction and func-

pulmonary hypertension in patients with normal left ventricu-

[25] Ennezat PV, Lefez V, Marechaux S, et al. Left ventricular abnor-
mal response during dynamic exercise in patients with heart
failure and preserved left ventricular ejection fraction at rest.

functional mitral regurgitation in heart failure and pre-
served ejection fraction: a new entity. Eur J Echocardiogr
2010;11:E14.

[27] Borlaug BA, Nishimura RA, Sorajja P, et al. Exercise hemody-
namics enhance diagnosis of early heart failure with preserved

[28] Lam CS, Roger VL, Rodeheffer RJ, et al. Pulmonary hyper-
tension in heart failure with preserved ejection fraction: a

[29] Laskey WK, Ferrari VA, Palevsky HI, et al. Pulmonary artery
hemodynamics in primary pulmonary hypertension. J Am Coll

monary arterial hypertension in patients with systemic sclerosis.

disease-associated pulmonary arterial hypertension in the
modern treatment era. Am J Respir Crit Care Med

monary hypertension associated with systemic sclerosis: four

[33] Grunig E, Weissmann S, Ehiken N, et al. Stress Doppler echocar-
diography in relatives of patients with idiopathic and familial
pulmonary arterial hypertension: results of a multicenter
European analysis of pulmonary artery pressure response to

[34] Tolle JJ, Waxman AB, Van Horn TL, et al. Exercise-induced pul-

monary haemodynamics at rest and on exercise in patients
with idiopathic pulmonary fibrosis. Bull Eur Physiopathol Respir

increase to exercise in chronic obstructive pulmonary dis-
ease is limited by increased pulmonary artery pressure. Heart

[37] Machado RF, Mack AK, Martyr S, et al. Severity of pul-
monary hypertension during vaso-occlusive pain crisis and
Exercise pulmonary hypertension

