Mots clés : Arthropathie haemophilique ; Chirurgie

La répétition des hémarthroses provoque des lésions articulaires responsables de retentissements fonctionnels variables d’un patient à l’autre. Comme pour les pathologies dégénératives habituelles, il y a peu de parallélisme anatomoclinique. En conséquence, l’indication chirurgicale ne dépend pas uniquement de l’évolution radiographique, mais essentiellement de la plainte fonctionnelle.

L’importance de la dégradation articulaire constatée sur les arthropathies hémo-philiques, (notamment, le coude, le genou ou la cheville) conduit le chirurgien à réaliser souvent des arthrodèses ou des arthroplasties prothétiques.

L’acte chirurgical impose bien évidemment une prise en charge multidisciplinaire. L’importance des raideurs existantes et surtout leur chronicité, nécessite d’associer un travail de rééducation souvent en préopératoire et systématique en postopératoire. Le coût du traitement substitutif en facteurs de coagulation impose une localisation géographique dans un centre référent. Les prothèses sont essentiellement utilisées sur la hanche, le genou et le coudé ; les arthrodèses sont souvent préférées sur l’articulation de la cheville.

Keywords: Hemophilia; Joint; Rehabilitation

Objectif. – Haemophilia is responsible for joint bleedings because of coagulation factor deficit. When bleedings are repeated, a vicious circle ends in a progressive and complete destruction of joints. The purpose of this lecture is to show how this destruction occurs clinically while focusing on various preventive therapeutic options.

Method. – After a brief reminder of the physiopathological factors of haemophilic joint diseases, various joint topographies are described. Clinical and radiological evolution is shown from clinical cases. Various clinical scores are also discussed. The clinical course of the joint is discussed, according to preventive treatment with anti-haemophilic factors and according to the presence of an inhibitor. The various conservative treatments used at different stages of joint destruction are exposed.

Results. – Three joints, elbows, knees and ankles have a particularly high risk of destruction. According to the possibilities of disease prevention, 1 to 3 joints will be destroyed by the age of 20 years versus 5 if no preventive treatment is given. The presence of an inhibitor is a powerful protection for joint integrity. Physical medicine and rehabilitation treatments are used to restore deficiencies and to improve pain relief. Synoviotomy attempts to limit the synovial proliferation which evolves on the own and participates in the joint degradation.

Discussion. – Preservation of joints in haemophilic subjects depends on disease prevention with anti-haemophilic factors but also on exposure to risk resulting from proposed activities and compliance with an annual joint follow-up to guarantee early treatment of haemarthrosis and early-stage arthropathy. This specific assessment requires multidisciplinary medical cooperation to protect joint integrity throughout the life of the haemophilic subject.

Keywords: Hemophilic arthropathy; Surgery

Repeated hemorrhaxis causes joint damage responsible for functional impairment variable from one patient to another. As usual with degenerative diseases, there are no predicting factors on radiographs. Consequently, the indication for surgery depends not only on radiographic progression, but essentially the functional complaint.

The importance of joint damage seen in hemophilic arthropathy (especially elbow, knee or ankle) often leads the surgeon to perform arthrodesis or prosthetic replacements. The surgery obviously requires a multidisciplinary approach. The significant stiffness and especially its chronicity, requires systematic postoperative rehabilitation and sometimes preoperative rehabilitation. The cost of clotting factors implies a geographic location near a referral center. Prostheses are mainly used for the hip, knee, and elbow; arthrodesis is often preferred for the ankle joint.

Keywords: Hemophilic arthropathy; Joint rehabilitation

Abstract / Annals of Physical and Rehabilitation Medicine 54S (2011) e96–e99