Original article / Article original

Tolerance and effectiveness on pain control of Pamidronate® intravenous infusions in children with neuromuscular disorders

Tolérance et efficacité sur les douleurs des perfusions de Pamidronate® chez les enfants porteurs d’une maladie neuromusculaire

S. Wagner*, I. Poirot, C. Vuillerot, C. Berard

L’Escale service de MPR pédiatrique, hôpital Femme–Mère–Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron cedex, France

Received 19 January 2011; accepted 2 July 2011

Abstract

Osteoporosis is a common complication in children with motor impairments. They have a higher risk of fractures (20% during their lifetime) mostly at femoral level. Furthermore, these children have pain yet no clear relation has been established between osteoporosis and pain. The efficacy of bisphosphonates has been validated in adults and for children with osteogenesis imperfecta (OI). However, its use in children with motor impairments has not yet been validated.

Patients and methods. – Retrospective study on the medical charts of children presenting neurological diseases and motor impairments associated to secondary symptomatic osteoporosis. These children underwent treatment with Pamidronate® intravenous infusions (I.V.) in Lyon and Valence between 2002 and 2008. Data were collected on pain control, incidence and frequency of fractures and bone mass density (BMD).

Data on adverse events were also collected to evaluate treatment’s tolerance.

Results. – Twelve children’s charts were studied for a total of 50 Pamidronate® I.V. infusions. Regarding treatment’s efficacy, we observed a clear decrease and even total relief of the pain with improvement reported after 98% of perfusions. Regarding BMD, there was a real improvement after the treatment (e.g., lumbar BMD measures, –46.5% before treatment and –27% after treatment). The adverse events, flu-like syndrome, muscle pain and asymptomatic hypocalcemia, were minor and quickly reversible.

Conclusion. – It seems quite essential to screen for osteoporosis-related pain in these children and treat them quickly to avoid a negative impact on their quality of life. Treatment with I.V. bisphosphonates has shown its relevance, yet practical modalities still need to be defined. It would be interesting but quite difficult to implement, in light of the positive effect of this study, a prospective, randomized, controlled, double-blind vs. placebo study on a large enough sample of patients.
© 2011 Elsevier Masson SAS. All rights reserved.

Keywords: Osteoporosis; Bisphosphonates; Motor impairments; Children

Résumé

L’ostéoporose est une complication classique chez les enfants déficients moteurs avec un risque élevé de fracture (20 % au cours de leur vie) essentiellement au niveau du fémur. Par ailleurs, les enfants présentent des douleurs sans que l’on ait pu faire le lien entre douleurs et ostéoporose. Le traitement par bisphosphonates a prouvé son efficacité chez l’adulte et dans l’ostéogénèse imparfaite de l’enfant. Son utilisation chez les enfants porteurs d’une déficience motrice reste à définir.

Résultats. – Douze enfants ont été étudiés avec au total 50 perfusions. Sur le plan des effets, nous observons une nette diminution voire une disparition des douleurs avec un effet bénéfique après 98 % des perfusions et une amélioration de la densité minérale osseuse (en lombaire, –46,5 % avant traitement et –27 % après traitement). Les effets secondaires restent limités et rapidement réversibles à type de syndrome pseudo grippal, douleurs musculaires et hypocalcémie asymptomatique.

* Auteur correspondant.
E-mail address: weber.sabrina@neuf.fr (S. Wagner).

1877-0657/$ – see front matter © 2011 Elsevier Masson SAS. All rights reserved.
Conclusion. – Il apparaît essentiel de dépister les douleurs secondaires à l’ostéoporose chez ces enfants et de les traiter rapidement pour éviter l’impact sur la qualité de vie. Le traitement par bisphosphonates en intraveineux a montré son intérêt mais les modalités pratiques restent à définir. Il serait intéressant mais difficile à mettre en place, vu l’effet positif de cette étude, de réaliser une étude prospective randomisée, contrôlée, en double insu versus placébo avec un nombre de patients suffisant.

Mots clés : Ostéoporose ; Bisphosphonate ; Déficience motrice ; Enfant

1. English version

1.1. Introduction

For a long time osteoporosis has been considered as an adult pathology. It is characterized by bone mass density (BMD) osteodensitometry measurements < −2.5 DS [2]. To date, no specific pediatric definition for osteoporosis is available and the diagnosis in children is based on adult criteria. However, this pathology does affect children first because the life expectancy in these chronic pathologies has increased but also there is an increased use of long-term treatments inducing bone loss such as steroids [8].

All pathologies with motor impairments can induce osteoporosis in children. The risk is even higher if the child’s functional level is low [13]. A study conducted in 2002 showed that 96% of children with GMF-CS 5 (maximal motor impairment in cerebral palsy) [17] had BMD measurements < −2.5 DS at lumbar and femoral level as evidenced by osteodensitometry findings [7,13,14]. The most frequent clinical pictures of osteoporosis in children with motor impairments are fractures and pain; consequently physiotherapy activities become more limited [7,11,13]. Between 21 and 59% of these children will experience a fracture during their lifetime, often a femoral one, and these fractures are secondary to minimal trauma or no trauma at all [12,14]. Their treatment rarely requires surgery, however they are a challenge for rehabilitation teams for these children [22] and the subsequent immobilization aggravates this osteoporosis triggering recurrent fractures. In children, validated treatments for osteoporosis are based first on prevention by identifying risk factors and triggering circumstances for these fractures and secondly on calcium and vitamin D supplements to reach the target: 25OH vitamin D > 50 mmol/l [6,15,23].

In adults, bisphosphonates have proved their efficacy. This treatment has a validated impact on osteoporosis by inhibiting osteoclast activity and thus diminishing bone resorption [4,9,13,23]. In children, studies have validated the effectiveness of bisphosphonates in treating osteoporosis for patients with osteogenesis imperfecta (OI) and reported as results: increased BMD from 0.5 to 1 DS per year that continued for 2 years after the end of the treatment, reduced number of fractures, decreased pain and increased mobility [10].

There are still very few data available regarding the effectiveness and tolerance of bisphosphonates in children with motor impairments, which motivated this study. The goal of this study on children with motor impairments and secondary osteoporosis was to describe the impact of I.V. bisphosphonates treatment on pain and number of fractures and evaluate treatment’s tolerance...
All patients were non-walkers at the beginning of the treatment: five had never walked and seven had lost their walking abilities some years ago.

Half of these patients benefited from passive standing on regular basis, one hour per day in average, with a custom-molded assistive device.

All patients had physiotherapy two to three times a week, vitamin D (one blister every 3 months) and calcium supplements before the treatment was implemented.

1.3.2. Treatment indications

All children presented pain during joint mobilization, permanent pain or even severe pain disrupted their sleep and not managed by classic analgesics. Ten out of the 12 children in this study were taking analgesics regularly, the drugs used were acetaminophen (seven children were using it by itself), codeine (two children) and morphine (one child) yet this treatment could not provide enough pain relief which motivated the treatment with bisphosphonates (visual analog pain scale > 3

Pre-therapeutic check-up

- Clinical (VAS, fracture)
- Biological (calcium and phosphate levels and urine calcium/creatinine ratio levels)
- Imaging (osteodensitometry measures)

Outpatient hospital

- Intravenous infusion of 1mg/kg of Pamidronate (without exceeding 30mg) over a 4-hour period. To be diluted in 250ml of Glucose 5% solution if weight < 25kg or in 500ml of GS 5% if weight > 25kg.
- Scope monitoring +Blood pressure/h for 2 hours after the end of the infusion

3-day hospital stay

- Day 2 infusion based on calcium levels at the end of the first infusion
 - If calcium values > 2.2 mmol/l: infusion with 1mg/kg (not exceeding 60mg) and discharge at Day 2
 - If calcium values between 2 and 2.2 mmol/l: infusion with 0.5mg/kg (not exceeding 30mg) and discharge at Day 3
 - If calcium values < 2 mmol/l: no more infusion and monitoring at the hospital until calcium values have normalized

Monitoring

- Controlling calcium values at the end of the infusion
- Oral calcium supplement according to calcium values and in all cases Vitamin D supplements 100000UI/3 months

Fig. 1. I.V. infusion protocols.
Table 1 Patients’ characteristics and pain evolution after treatment.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Pathology</th>
<th>Motor status</th>
<th>Number of fractures before treatment</th>
<th>Age at the first fracture (years)</th>
<th>Duration of the pain before treatment (years)</th>
<th>Protocol type (day)</th>
<th>Total number of I.V. infusions</th>
<th>Age at the first I.V. (years)</th>
<th>Mean pain intensity before treatment</th>
<th>Mean pain intensity M1 after treatment</th>
<th>Mean pain intensity M3 after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>Glycogen storage disease type II (Pompe disease)</td>
<td>Never walked</td>
<td>4</td>
<td>2.8</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>SSOPS 30</td>
<td>SSOPS 8</td>
<td>SSOPS 10</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 10</td>
<td>0</td>
<td>N/A</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>14.5</td>
<td>VAS 6</td>
<td>VAS 0</td>
<td>VAS 1</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 9</td>
<td>1</td>
<td>3</td>
<td>0.5</td>
<td>3</td>
<td>1</td>
<td>13.5</td>
<td>VAS 5</td>
<td>VAS 5</td>
<td>VAS 5</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>Type 2 SMA</td>
<td>Never walked</td>
<td>0</td>
<td>N/A</td>
<td>0.5</td>
<td>1</td>
<td>5</td>
<td>4.5</td>
<td>VAS 8</td>
<td>VAS 1</td>
<td>VAS 2</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>Type 2 SMA</td>
<td>Never walked</td>
<td>3</td>
<td>4.7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>VAS 8</td>
<td>VAS 0</td>
<td>VAS 4</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 7</td>
<td>0</td>
<td>N/A</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>13</td>
<td>VAS 5</td>
<td>VAS 0</td>
<td>VAS 4</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>Congenital MD</td>
<td>Never walked</td>
<td>3</td>
<td>1.8</td>
<td>0.2</td>
<td>1</td>
<td>7</td>
<td>2.2</td>
<td>SSOPS 22</td>
<td>SSOPS 0</td>
<td>SSOPS 3</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 6</td>
<td>3</td>
<td>5.5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>12.5</td>
<td>VAS 6</td>
<td>VAS 3</td>
<td>VAS 4</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 11</td>
<td>0</td>
<td>N/A</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>VAS 9</td>
<td>VAS 1</td>
<td>VAS 3</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>Type 2 SMA</td>
<td>Never walked</td>
<td>1</td>
<td>11.5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>VAS 7</td>
<td>VAS 3</td>
<td>VAS 4</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 11</td>
<td>0</td>
<td>N/A</td>
<td>0.5</td>
<td>3</td>
<td>1</td>
<td>13.6</td>
<td>VAS 6</td>
<td>VAS 0</td>
<td>VAS 4</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>DMD</td>
<td>Lost walking abilities at 11</td>
<td>0</td>
<td>N/A</td>
<td>0.5</td>
<td>3</td>
<td>1</td>
<td>14.3</td>
<td>VAS 7</td>
<td>VAS 4</td>
<td>VAS 4</td>
</tr>
</tbody>
</table>

DMD: Duchenne muscular dystrophy; Type 2 SMA: type 2 spinal muscular atrophy; VAS: visual analog scale; SSOPS: San Salvadorian observational pain scale.

in spite of the analgesics used). The mean pain score before treatment for each patient is listed in Table 1. The mean duration between the onset of pain and implementation of bisphosphonates treatment was 1.88 year (S.D.: 1.5 year).

Six out of the 12 children had had at least one fracture before the first infusion (one child had four fractures, three children had three fractures and two children had one). Amounting to 15 fractures observed for this cohort, 12 affecting the femur and three the humerus. The circumstances of onset for all these fractures involved very little or no impact (i.e., during transfers or physiotherapy sessions). The mean age at the first fracture was 4.88 years (S.D.: 3.51 years, range: 1.8–11.5 years).

1.3.4. Lab tests before treatment

The pre-treatment blood test was normal: mean total calcium at 2.40 mmol/l (S.D.: 0.097) (normal range: 2.25 to 2.55 mmol/l), mean phosphate levels at 1.51 mmol/l (S.D.: 0.20) (NR: 1 to 1.8mmol/l), mean parathyroid hormone (PTH) levels at 32.23 pg/ml (S.D.: 15.05) (NR: 10 to 60 pg/ml), mean 25OH Vitamin D at 74.20 ng/ml (S.D.: 48.88) (NR: 15 to 40 ng/ml), mean alkaline phosphatase levels (APL) at 124.46 UI/l (S.D.: 21.39) (NR: 100 to 230 UI/l).

The only abnormality found was regarding urinary calcium/creatinine ratio values, with a mean at 1.44 mmol/mmol (S.D.: 0.83) i.e. far above the normal range for children over the age of 4 which is set at < 0.3 mmol/mmol.

1.3.5. Treatment effects

1.3.5.1. On pain control. In 20% of cases (10/50), there was complete pain relief after treatment (VAS at 0 at Month 1 and Month 3 after treatment), in 60% of the cases (30/50), there was transitory pain relief (EVA at 0 at M1 and > 3 at M3 after treatment) and in 18% of cases, the pain had decreased by more than three points on the VAS at M1 and M3. In only 2% of the cases (1/50), the infusions were ineffective (Fig. 2). The global result on pain was effectiveness in 98% of the cases (Fig. 3).
When the treatment brought an improvement, it was an immediate one. The mean pain scores for each patient at M1 and M3 are listed in Table 1.

1.3.5.2. On fractures. Six children out of 12 presented at least one fracture before the treatment (with a mean follow-up up between 1 and 10 years). After the treatment, 10 out of 12 children had no more fractures. Two children had additional fractures after treatment most often affecting the femur (Fig. 4); the first child presented two fractures immediately after the first infusion, the second 6 months after a well-conducted treatment. We were able to collect a mean follow-up of 1.7 year.

1.3.5.3. On BMD. For four children, we were able to collect osteodensitometry data before and after treatment. For these four children, we observed a clear BMD improvement at lumbar level which went from −46.5 to −27% of normal BDM according to age and weight ($p = 0.05$) (Fig. 4). Given the retrospective nature of the study, we did not have any other osteodensitometry data for the other eight patients studied.

1.3.6. Treatment’s tolerance

Essentially, the main adverse event reported was a flu-like syndrome during the first I.V. infusion or up to 48 hours after the beginning of the treatment. Nine infusions out of 50 triggered this type of adverse event that spontaneously resolved in a few hours. Only one infusion triggered hypocalcemia and was stopped. The other adverse side events reported were muscle pain (three infusions out of 50), headaches (1/50) and vomiting (1/50): all of which were resolved in less than 48 hours after the end of the infusion. No incidence of jaw osteonecrosis was reported.

Regarding biological results, we observed a significant decrease of the calcium levels after treatment (mean at 2.4 mmol/l before treatment and 2.22 mmol/l after treatment) ($t = 6.337$, $p < 0.0001$); as well as a significant decrease of phosphate levels (mean at 1.51 mmol/l before treatment and 1.32 mmol/l after treatment) ($t = 4.340$, $p < 0.0001$): yet never reaching a critical threshold requiring specific care (Fig. 5).

1.4. Discussion

Our study is one of the first to study the effectiveness of this treatment on pain and the positive results of the treatment speak for themselves with 98% of infusions leading to improvement or even total alleviation of the pain when these children had been suffering for several months with no relief from classic analgesics. In fact, not only did this treatment improve their quality of life, but it permitted better and more effective
rehabilitation training sessions (the latter were often neglected due to the pain).

Previous studies published mostly focused on the effectiveness on BMD measured by osteodensitometry, the only objective quantitative criterion used mostly in adults [1,14,19,20]. However, BMD is not a good criterion in children with motor impairments because it is not correlated to the risk of fracture [5,12]. Furthermore, osteodensitometry measurements are often done at lumbar level when osteoporosis in children with motor impairments is mostly observed on the femoral neck. It has been validated that lumbar BMD measures cannot be extrapolated to the entire body [11]. In our study, the treatment was effective on lumbar BMD, but due to the low number of patients we cannot reach any significant conclusion.

The decreased number of fractures after the treatment seems quite real. Yet our retrospective study only had a 6-year follow-up and thus yielded an insufficient level of evidence to validate this result, just like the other studies conducted to date [1,3,15,18]. We should underline that not all our patients benefited from the regular Pamidronate® L.V. treatment every 3 months for 1 to 2 years. This could also explain the high rate of fracture recurrence in spite of the treatment.

Treatment tolerance was rather good since the most frequent adverse event was a well-tolerated flu-like episode that spontaneously resolved over a few hours. This result is in accordance with the previously published studies. Hypocalcemia events were rare and asymptomatic [4,14,19,23]. However, in pediatric care, no evidence of jaw osteonecrosis was reported after bisphosphonates treatment [19,23]. A review of the literature published in reported the risk of jaw osteonecrosis after bisphosphonates treatment at 1/100000 per year in adults. However, no relation was ever established with jaw osteonecrosis and bisphosphonates in osteoporosis care management. For Rizzoli et al., in light of these data no specific dental care should be implemented before treatment [19].

One study showed a lower treatment tolerance in patients with Duchenne muscular dystrophy, which was not evidenced in our study [1].

On a biological level, the higher urinary calcium/creatinine rate (Ca/Cr) before treatment would seem to be the consequence of immobilization [16,20]. The main weakness of this study is its small sample size. This small cohort prevented us from comparing the effectiveness of these two protocols (1 or 3 days), as studied in a previous publication [21]. This study conducted for children with OI showed an increase in BMD and a decreased risk of fracture after the 1-day treatment. This still remains to be defined but could improve patients’ tolerance and compliance to the treatment.

Finally, it would be relevant to conduct prospective studies to compare the efficacy and tolerance of the various bisphosphonates’ molecules available, doses to be administered and administration modes. In fact for a similar effectiveness, an oral administration of the treatment at home would seem preferable than I.V. protocols in a hospital setting.

1.5. Conclusion

It seems quite essential to detect pain in children with motor impairments and implement a treatment very quickly to avoid a negative impact on their quality of life. Treatment with bisphosphonates L.V. infusions has shown its relevance yet some additional studies are necessary to evaluate the costs and constraints related to hospital stay and the effectiveness of the treatment on pain according to the patients and their family. This assessment could help define the best therapeutic protocol. Finally, it would be quite relevant to compare this effectiveness with an oral administration of the treatment.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

2. Version française

2.1. Introduction

L’ostéoporose, longtemps considérée comme une pathologie de l’adulte, est caractérisée par une densité minérale osseuse (DMO) inférieure à –2,5 DS sur l’ostéodensitométrie osseuse [2]. Il n’existe pas de définition spécifiquement pédiatrique et actuellement le diagnostic est posé chez l’enfant en se basant sur les critères adultes. Pourtant cette pathologie touche aujourd’hui aussi l’enfant en raison de l’augmentation de l’espérance de vie dans certaines pathologies chroniques et de l’utilisation au long cours de traitements ostéopéniant comme les corticoïdes [8]. Toutes les pathologies responsables d’une déficience motrice sont à risque d’ostéoporose chez l’enfant. Le risque est d’autant plus important que le niveau fonctionnel est bas [13]. Une étude réalisée en 2002 montre que 96 % des enfants de niveau GMF-CS 5 (handicap moteur maximal dans la paralysie cérébrale) [17] ont une DMO inférieure à –2,5 DS sur l’ostéodensitométrie osseuse en lombaire et en fémoral [7,13,14]. Les manifestations cliniques les plus fréquentes de l’ostéoporose chez l’enfant déficient moteur sont les fractures, les douleurs ; on observe, de plus, une limitation des interventions de kinésithérapie secondaires à celles-ci [7,11,13]. Entre 21 et 39 pour cent de ces enfants ont une fracture au cours de leur vie avec une localisation préférentielle au fémur et ces fractures sont secondaires à des traumatismes minimes ou inexistants [12,14]. Leur traitement est rarement chirurgical mais elles constituent un problème majeur dans les centres de rééducation prenant en charge ces enfants [22] et l’immobilisation qui en découle aggrave encore l’ostéoporose entraînant parfois des fractures à répétition. Les traitements reconnus pour l’ostéoporose de l’enfant sont en premier lieu le traitement des facteurs de risque et de la cause, la supplémentation en calcium et en vitamine D avec comme objectif un dosage sanguin de 25OH vitamine D > 50 mmol/L [6,15,23]. Chez l’adulte, les bisphosphonates ont également fait la preuve de leur efficacité. Ce traitement a un effet reconnu en inhibant les ostéoclastes et diminuant, de ce fait, la résorption
Chez l’enfant, des études ont montré l’efficacité des bisphosphonates dans le traitement de l’ostéoporose chez les patients porteurs d’ostéogenèse imparfaite avec une augmentation de la densité osseuse de 0,5 à 1 DS par an qui persiste même deux ans après la fin du traitement, une diminution du nombre de fractures, une diminution des douleurs et une augmentation de la mobilité [10].

Les données sont encore rares concernant l’efficacité et la tolérance du traitement par bisphosphonates chez les enfants porteurs de déficience motrice, ce qui justifie cette étude. L’objectif de cette étude est de décrire, dans une population d’enfants porteurs d’une déficience motrice avec ostéoporose, l’effet d’un traitement intraveineux par bisphosphonates sur la douleur, le nombre de fracture et sa tolérance.

2.2. Patients et méthode

Il s’agit d’une étude rétrospective sur dossiers. Ont été inclus les enfants atteints de maladie neuromusculaire entraînant une déficience motrice sévère avec ostéoporose secondaire symptomaticque (fracture et/ou douleur) ayant bénéficié d’un traitement par Pamidronate en intraveineux à Lyon et à Valence entre 2002 et 2008 selon un protocole précis en un ou trois jours consécutifs (deux jours de perfusions et un de
surveillance) (Fig. 1). Les indications du traitement reposaient sur la présence de douleurs invalidantes difficiles à gérer avec les traitements antalgiques habituels. Une surveillance clinique et biologique (calcémie, phosphatémie, calcicurie avant et après traitement) est mise en place durant l’hospitalisation.

Le choix du protocole de perfusion n’est pas établi en fonction de la gravité de l’enfant ou de la pathologie d’origine mais en fonction des habitudes du service qui le prend en charge. Le traitement consiste en une perfusion de Pamidronate \(^{\text{RC}} \) à la dose de 1 mg/kg par perfusion sur quatre heures pendant un ou deux jours consécutifs tous les trois mois comme recommandé dans le traitement de l’ostéogénèse imparfaite [14] (soit 1 mg/kg par cure et 4 mg/kg par an si protocole en un jour et 2 mg/kg par cure et 8 mg/kg par an si protocole en trois jours).

Nous recueillons, à l’occasion de chaque perfusion, des données sur les douleurs (EVA ou hétéro-évaluation avec l’échelle de San-Salvador avant le début du traitement puis un mois et trois mois après la perfusion), la fréquence des fractures (avant et après traitement) et la DMO (mesurée par un examen absorptionométrique du rachis lombaire avec résultat donné en pourcentage par rapport à la valeur moyenne pour la taille). Ont été également recueillis les effets secondaires du traitement pour évaluer sa tolérance.

Du fait du faible effectif, nous avons donné les résultats des données qualitatives sans les moyennier. Pour les données quantitatives, une comparaison de moyenne par test \(t \) de Student au risque alpha 0,05 a été utilisée pour comparer les données avant et après traitement.

2.3. Résultats

2.3.1. Caractéristiques de la population

Douze enfants ont rempli les critères d’inclusion : trois filles et neuf garçons.

Les caractéristiques des patients sont disponibles dans le Tableau 1.

Les pathologies responsables du déficit moteur sont les suivantes : amyotrophie spinale type 2 (trois), myopathie de Duchenne (sept), myopathie métabolique type maladie de Pompe (un), myopathie congénitale (un).

Tableau 1

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sexe</th>
<th>Pathologie</th>
<th>Statut moteur</th>
<th>Nombre de fractures avant traitement</th>
<th>Age de première fracture (ans)</th>
<th>Durée des douleurs avant traitement (ans)</th>
<th>Type de protocole (jour)</th>
<th>Nombre total de perfusions</th>
<th>Age à la première perfusion (ans)</th>
<th>Intensité moyenne des douleurs avant traitement</th>
<th>Intensité moyenne des douleurs 1 mois après traitement</th>
<th>Intensité moyenne des douleurs 3 mois après traitement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>Maladie de Pompe DMD</td>
<td>N’a jamais marché</td>
<td>4</td>
<td>2,8</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>EDESS 30</td>
<td>EDESS 8</td>
<td>EDESS 10</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 10 ans</td>
<td>0</td>
<td>Non</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>14,5</td>
<td>EVA 6</td>
<td>EVA 0</td>
<td>EVA 1</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 9 ans</td>
<td>1</td>
<td>3</td>
<td>0,5</td>
<td>3</td>
<td>1</td>
<td>13,5</td>
<td>EVA 5</td>
<td>EVA 5</td>
<td>EVA 5</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>ASI type 2</td>
<td>N’a jamais marché</td>
<td>0</td>
<td>Non</td>
<td>0,5</td>
<td>1</td>
<td>5</td>
<td>4,5</td>
<td>EVA 8</td>
<td>EVA 1</td>
<td>EVA 2</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>ASI type 2</td>
<td>N’a jamais marché</td>
<td>3</td>
<td>4,7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>EVA 8</td>
<td>EVA 0</td>
<td>EVA 4</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 7 ans</td>
<td>0</td>
<td>Non</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>13</td>
<td>EVA 5</td>
<td>EVA 0</td>
<td>EVA 4</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>Myopathie congénitale DMD</td>
<td>N’a jamais marché</td>
<td>3</td>
<td>1,8</td>
<td>0,2</td>
<td>1</td>
<td>7</td>
<td>2,2</td>
<td>EDESS 22</td>
<td>EDESS 0</td>
<td>EDESS 3</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 6 ans</td>
<td>3</td>
<td>5,5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>12,5</td>
<td>EVA 6</td>
<td>EVA 3</td>
<td>EVA 4</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 11 ans</td>
<td>0</td>
<td>Non</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>EVA 9</td>
<td>EVA 1</td>
<td>EVA 3</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>ASI type 2</td>
<td>N’a jamais marché</td>
<td>1</td>
<td>11,5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>EVA 7</td>
<td>EVA 3</td>
<td>EVA 4</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 11 ans</td>
<td>0</td>
<td>Non</td>
<td>0,5</td>
<td>3</td>
<td>1</td>
<td>13,6</td>
<td>EVA 6</td>
<td>EVA 0</td>
<td>EVA 4</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>DMD</td>
<td>Perte de la marche à 11 ans</td>
<td>0</td>
<td>Non</td>
<td>0,5</td>
<td>3</td>
<td>1</td>
<td>14,3</td>
<td>EVA 7</td>
<td>EVA 4</td>
<td>EVA 4</td>
</tr>
</tbody>
</table>

DMD : dystrophie musculaire de Duchenne ; ASI type 2 : amyotrophie spinale type 2 ; EVA : échelle visuelle analogique ; EDESS : échelle douleur enfant de San-Salvador.

Tous les patients étaient non marchant lors de la première perfusion : cinq n’avaient jamais marché, sept avaient perdu la marche quelques années plus tôt.

La moitié des enfants bénéficiaient d’une verticalisation passive régulière d’une heure par jour en moyenne en coque moulée.

Tous les patients bénéficiaient de kinésithérapie motrice deux à trois fois par semaine, d’une supplémentation en vitamine D (une ampoule par os tous les trois mois) et en calcium avant la mise en place du traitement.

2.3.2. Indications du traitement

Tous les enfants présentaient des douleurs aux mobilisations ou douleurs permanentes, voire insomniantes mal calmées par les antalgiques classiques. Dix enfants sur les 12 étudiés utilisaient des antalgiques de façon régulière. Les antalgiques utilisés étaient le doliprane (sept enfants l’utilisent seul), la codeine (deux enfants) et la morphine (un enfant) mais ce traitement ne permettait pas une efficacité suffisante ce qui a justifié la mise en place du traitement par bisphosphonates (EVA supérieure à trois malgré les antalgiques utilisés). Le score moyen des douleurs avant traitement pour chaque patient est disponible dans le Tableau 1. La durée moyenne entre le début des douleurs et la mise en place du traitement par bisphosphonates était de 1,88 an (écart-type : 1,57 an).

Six enfants sur 12 avaient eu au moins une fracture avant la première perfusion (un enfant avait eu quatre fractures, trois enfants avaient eu trois fractures et deux enfants avaient eu un fracture). Sur un total de 15 fractures observées, 12 concernaient le fémur et trois l’humérus. Tous les mécanismes des fractures étaient de faible cinétique (lors d’un transfert ou d’une séance de kinésithérapie). L’âge moyen de la première fracture était de 4,88 ans (écart-type : 3,51 ans), compris entre 1,8 et 11,5 ans.

2.3.3. Modalités du traitement

Au total, les 12 enfants ont bénéficié de 50 perfusions de Pamidronate selon deux protocoles en un ou trois jours consécutifs. Huit enfants ont eu des perfusions sur trois jours et quatre enfants ont eu des perfusions sur un jour. En cas d’efficacité et de bonne tolérance, les cures (sur un ou trois jours) étaient réalisées tous les trois mois. Le nombre total de perfusion par enfant était très variable (entre une et 21 perfusions) avec une moyenne de 4,16 perfusions par enfant soit un an de traitement en moyenne. L’âge moyen de la première perfusion était de 10,84 ans (écart-type : 4,043 ans) (de 2,2 à 14,5 ans).

2.3.4. Évaluation biologique avant traitement

Le bilan sanguin préréthérapeutique était toujours normal : calcémie moyenne à 2,40 mmol/L (écart-type 0,097) (N : 2,25 à 2,55 mmol/L), phosphatémie moyenne à 1,51 mmol/L (écart-type 0,20) (N : 1 à 1,8 mmol/L), parathormone moyenne à 32,23 pg/ml (écart-type 15,05) (N : 10 à 60 pg/ml), 25OH vitamine D moyenne à 74,20 ng/ml (écart-type 48,88) (N : 15 à 40 ng/ml), phosphatases alcalines moyennes à 124,46 UI/L (écart-type : 21,39) (N : 100 à 230 UI/L).

La seule anomalie trouvée concerne l’excrétion de calcium avec calciurie/créatininurie moyenne élevée à 1,44 mmol/
traitement bien conduit). Nous avons pu obtenir un suivi moyen de 1,7 an.

2.3.5.3. Sur l’ostéodensitométrie osseuse. Nous avons pu obtenir pour quatre enfants une ostéodensitométrie osseuse avant et après traitement. Il est observé, pour ces quatre enfants, une amélioration significative de la densité osseuse en lombaire qui passe de −46,5 à −27 % de la densité lombaire normale pour l’âge et le poids ($p = 0,05$) (Fig. 4). S’agissant d’une étude rétrospective, nous ne disposons pas de données d’ostéodensitométrie osseuse pour les huit autres enfants étudiés.

2.3.6. Tolérance du traitement

Le principal effet secondaire retrouvé est un syndrome pseudo grippal essentiellement lors de la première perfusion et dans les 48 heures suivant le début du traitement. Neuf perfusions sur 50 ont entraîné ce type d’effet secondaire. Celui-ci a toujours été spontanément résolutif dans quelques heures. Seule une perfusion a entraîné une hypocalcémie nécessitant un arrêt de celle-ci. Les autres effets secondaires retrouvés sont des douleurs musculaires (trois perfusions sur 50), des céphalées (1/50) et des vomissements (1/50) ; tous résolutifs en moins de 48 heures après l’arrêt de la perfusion. Aucune ostéonécrose de mâchoire n’a été observée.

Sur le plan biologique, on observe une diminution significative de la calcémie après traitement (moyenne de 2,4 mmol/L avant traitement à 2,22 mmol/L après traitement) ($t = 6,337, p < 0,0001$) ; de même qu’une diminution significative de la phosphatémie (moyenne de 1,51 mmol/L avant traitement à 1,32 mmol/L après traitement) ($t = 4,340, p < 0,0001$) ; mais sans atteindre un seuil critique nécessitant une prise en charge particulière (Fig. 5).

2.4. Discussion

Notre étude est l’une des premières s’intéressant à l’efficacité sur les douleurs et, sur ce point, le bénéfice de ce traitement est évident avec 98 % des perfusions permettant une amélioration voire une disparition de douleurs alors que ces enfants souffraient depuis plusieurs mois sans efficacité des antalgiques classiques. De ce fait, ce traitement, en plus d’améliorer la vie quotidienne, leur permet de bénéficier d’une rééducation plus efficace (celle-ci était souvent négligée en raison des douleurs aux mobilisations).

Les précédentes études publiées se sont surtout intéressées à l’efficacité sur la DMO mesurée par ostéodensitométrie, seul critère numérique objectif et critère de prédiction chez l’adulte [1,14,19,20]. Cependant, la DMO n’est pas un bon critère chez l’enfant déficient moteur car elle n’est pas corrélée au risque de fracture [5,12]. De plus, les mesures d’ostéodensitométrie sont réalisées le plus souvent en région lombaire alors que l’ostéoporose dans le cas des déficients moteurs s’exprime plus au niveau du col fémoral. Il a été prouvé qu’une DMO en lombaire ne peut pas être extrapolée au corps entier [11]. Dans notre étude, on retrouve une efficacité sur l’ostéodensitométrie osseuse en lombaire mais le trop faible nombre de patients étudiés ne permet pas de conclure de manière significative.

La diminution du nombre de fractures après le traitement semble réelle. Mais notre étude rétrospective sur six années ne permet pas d’avoir un niveau de preuve suffisant pour l’affirmer, comme toutes les études réalisées jusqu’à présent [1,3,15,18]. Il faut préciser que nos patients n’ont pas tous bénéficié d’un traitement régulier par Pamidronate® tous les trois mois pendant un à deux ans. Cela peut expliquer une récidive plus importante des fractures malgré le traitement.

Concernant la tolérance, elle est plutôt bonne puisque l’effet secondaire le plus fréquent est un syndrome pseudo grippal bien toléré et spontanément résolutif en quelques heures. Ce résultat est en accord avec les précédentes études. Les hypocalcémies sont rares et asymptomatiques [4,14,19,23]. En revanche, il n’a jamais été montré en pédiatrie d’ostéonécrose de la mandibule après un traitement par bisphosphonates [19,23]. Une revue de la littérature de 2008 établit le risque d’ostéonécrose de la mandibule après traitement par bisphosphonates à 1/100000 par an chez l’adulte. Cependant, aucune relation entre l’ostéonécrose de la mandibule et le traitement par bisphosphonates dans l’ostéoporose n’a jamais été établie. Pour Rizzoli and al., en raison de ces données, aucune prise en charge particulière sur le plan dentaire n’est à mettre en place avant le traitement [19]. Une étude aurait montré une moins bonne tolérance de ce traitement chez les patients atteints de myopathie de Duchenne, ce que nous n’avons pas retrouvé dans la nôtre [1].

Fig. 4. Effets du traitement sur les fractures et l’ostéodensitométrie lombaire.

Fig. 5. Effets secondaires du traitement.
Sur le plan biologique, l’augmentation de la calculie (rapport calcium/creatine urinaire augmentés) avant le traitement serait un reflet de l’immobilisation [16,20].

La principale faiblesse de notre étude est l’effet restreint. Cet effet ne nous permet pas de comparer l’efficacité des deux types de protocoles (sur un ou trois jours) comme étudié dans une précédente publication [21]. Cette étude réalisée dans l’ostéogénese imparfaite montre une augmentation de la DMO et une diminution du risque de fracture après un traitement sur un journée. Ceci reste à préciser mais pourrait améliorer la tolérance et la compliance des patients au traitement.

Enfin, il serait nécessaire de réaliser des études prospectives pour comparer l’efficacité et la tolérance des différentes molécules de bisphosphonates disponibles, des doses à administrer et des voies d’administration de celle-ci. En effet, pour une efficacité identique, une administration orale à domicile serait préférable aux protocoles de perfusion en milieu hospitalier.

2.5. Conclusion

Il apparaît essentiel de dépister les douleurs chez les enfants porteurs de déficience motrice et de les traiter rapidement pour éviter l’impact sur leur qualité de vie. Le traitement par bisphosphonates en intraveineux a montré son intérêt mais un travail reste à faire pour évaluer le rapport coût et contraintes liées à l’hospitalisation et l’efficacité du traitement sur la douleur selon les patients et leur entourage. Cette évaluation permettra de préciser le meilleur protocole thérapeutique. Reste également à comparer cette efficacité avec un traitement administré par voie orale.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References