Rehabilitation in patients with peripheral arterial disease

La réadaptation au cours de l’artériopathie des membres inférieurs

J.-M. Casillas a,*, O. Troisgros a, A. Hannequin a, V. Gremeaux a,b,c, P. Ader a, A. Rapin a, Y. Laurent a

a Pôle rééducation-réadaptation, CHU de Dijon, 23, rue Gaffarel, 21079 Dijon cedex, France
b CIC-P Inserm 803, 23, rue Gaffarel, 21079 Dijon cedex, France
c Inserm U887, 23, rue Gaffarel, 21079 Dijon cedex, France

Received 18 November 2010; accepted 2 July 2011

Abstract

Rehabilitation is a recommended first-line therapy for patients with peripheral arterial disease (PAD) and consists of supervised exercise training and therapeutic education. Proven benefits are significant: improve pain-free walking distance, functional status and quality of life; reduce cardiovascular risk factors and mortality. At least three sessions weekly are recommended during 3 months. Exercise conditioning (global training and lower limb resistance training) is tailored by the preliminary evaluation of walking ability (free walking test, treadmill tests, 6-min walk test) and of the cardiac tolerance (maximal effort tests). Then the exercise workload is progressively improved. The four main goals of therapeutic education are: smoking cessation, prolonged physical activity, Mediterranean diet and observing pharmacological therapies. The limited compliance of the patients with PAD is often an obstacle for educational needs. The chronic patients with important functional limitations and unchecked risk factors will be preferentially enrolled in such programs. When a revascularization is discussed, rehabilitation can serve as trial treatment. Despite its efficacy, rehabilitation is still underutilized in clinical practice and should be promoted.

© 2011 Elsevier Masson SAS. All rights reserved.

Keywords: Exercise training; Peripheral arterial disease; Rehabilitation; Therapeutic education

Résumé

La réadaptation fait partie des recommandations de niveau A au cours de l’artériopathie des membres inférieurs (AMI), avec un double aspect de reconditionnement à l’effort et d’éducation thérapeutique. En effet les impacts démontrés sont importants : amélioration du périmètre de marche, des capacités physiques, des activités et de la qualité de vie ; réduction des facteurs de risque cardiovasculaire et de la mortalité. Si possible en ambulatoire, la prise en charge comportera au moins trois séances hebdomadaires pour une durée de trois mois. Le reconditionnement, basé sur des exercices globaux et analytiques, sera personnalisé sur les résultats de l’évaluation des capacités de marche (test de marche libre, tests sur tapis roulant, test de 6-minutes) et de la tolérance cardiaque (tests d’effort maximaux). Les quatre objectifs fondamentaux de l’éducation thérapeutique sont le sevrage tabagique, le maintien prolongé d’une activité physique adaptée, le régime méditerranéen et l’observance médicamenteuse. La compliance souvent limitée des patients est un obstacle à ces objectifs. Cette réadaptation est particulièrement indiquée lorsque les limitations fonctionnelles sont importantes et que les facteurs de risque ne sont pas contrôlés. Elle peut servir de traitement d’épreuve lorsqu’une revascularisation est discutée. Malgré les preuves de son efficacité, elle reste une option trop souvent négligée.

© 2011 Elsevier Masson SAS. Tous droits réservés.

Mots clés : Artériopathie des membres inférieurs ; Éducation thérapeutique ; Entrainement ; Réadaptation ; Reconditionnement à l’effort

* Corresponding author.

E-mail address: jean-marie.casillas@chu-dijon.fr (J.M. Casillas).
1. English version

1.1. Introduction

Despite the importance of its prevalence and morbidity, peripheral arterial disease (PAD) remains too often underestimated and is insufficiently managed [33]. So in France the patients with PAD are still excluded from intervention programs and don’t benefit from the same secondary preventive measures as the coronary patients [11]. Rehabilitation is recommended as a conservative treatment of reference during PAD [61,88,103,104,140]. It combines a personalised program of reconditioning to exercise and optimal control of the risk factors, based on therapeutic education [59,103]. It is still greatly under-utilised [44,132], thus justifying to make an update on its recorded effects, its implementation modalities, as well as on its indications.

1.2. Effects of rehabilitation in patients with PAD

1.2.1. On physical abilities

It is the increase of the walking distance, which, in case of claudication, represents the most demonstrative impact of the relevance of the reconditioning to exercise in patients with PAD. Assessed on important cohorts, it is of a mean of 150% [81,161]. This effect on walking abilities is also found in patients with PAD, but no claudication [92], who usually present functional limitations [90]. The improvement of the walking distance goes together with an increase of a 20 to 30% of the VO$_2$ peak, contributing to a better tolerance to exercise and to reduction of physical fatigue [63], in patients presenting previously a weakening of their maximal abilities [116]. Although fatigue represents an essential dimension of cardiovascular illnesses [18], the impact of rehabilitation on its evolution has but rarely been investigated. This is probably due to the multifactorial feature of this symptom, including altogether physical and psychical aspects, and making its analysis delicate [113]. Regarding the mechanisms explaining this physical improvement, the first one is related to the increase of the muscular oxidative capacities [63], in relation with the reconstitution of the mitochondrial enzymatic material [66]. Thus, at the end of reconditioning program, the reserve of muscular phosphocreatine is less quickly utilized during exercise, and its reconstitution is quicker during the recovery phase [38]. The better muscular perfusion, by reduction of the endothelial dysfunction, contributes to the improvement of the oxidative metabolism [14]. The conjunction of these metabolic and micro-circulatory effects probably explains the more important desaturation of muscular oxygen, showed by infrared spectroscopy during effort, at the end of a training program, as a result of the improvement of the extraction and the peripheral use of oxygen [42]. These results on the muscular capacities appear at least identical to those linked to a revascularisation by angioplasty or bypass [10,139,163], with the difference that following the training there is no blood pressure increase at the ankle [17,161]. Moreover, the development of collateral circulation under the effect of reconditioning to exercise has never been really demonstrated [140].

1.2.2. On daily activities

The widening of the walking distance, the better adaptation to exercise with reduced fatigue, the lesser incidence of pain, the educative aspect and the restoration of self-confidence, contribute to the resumption of daily activities in retrained patients [117]. So, a transfer is usually observed between the increase of physical capacities and the improvement of the level of every-day activities, assessed at 30% by accelerometer [49]. However, no data are available regarding the impact on integration to work.

1.2.3. On mood disorders

Depression is identified as a strong risk factor during cardiovascular illnesses [110], significantly deteriorating the survival curve, particularly during the regression phase of the revascularisation of PAD [23]. It implies of course psychosocial factors, but also some biological anomalies involving the endothelial cells [80], the serotoninergic routes, the hypothalamic-hypophysis axis, inflammation, the neurovegetative system [134]... It exists in 30 to 60% of the patients with PAD, its prevalence increasing with age, alteration of the physical capacities [124], and presence of pain [136]. The training programs participate in the improvement of this depressive syndrome [130], without proof of any impact on the survival curve, like in coronary patients [141].

1.2.4. On the personality aspects

The psychological conditions, especially the personality profile, are involved in the evolution of the cardiovascular illnesses. So, type A, characterized by elements of competitiveness and impatience, has for a very long time been incriminated in the onset of coronary attacks [45], whereas type D, with predominant elements of social inhibition and repression of emotions, is more often quoted in patients with PAD [3]. This difference in psychological profile between patients with a different expression (coronary vs. arterial claudication) of the same disease, atheroma, commonly noticed by the clinician in current practice, has not however resulted in studies of important cohorts. It has nevertheless implications in the management of the patients, particularly in their capacities of adherence to a program of therapeutic education [121]: greater fighting spirit for profile A and hence better prognosis in the control of the risk factors, usual denial for profile D limiting the adherence to a program of secondary prevention. The patients presenting a type D profile will preferably develop avoidance strategies towards the situations of discomfort and pain, which, as a result of this induced hypo-activity, will engage all the more into the spiral of deconditioning and progressive worsening. This probably explains in part the difficulties of adherence to rehabilitation of coronary patients with PAD, with more frequent withdrawal during the course of a cardiac rehabilitation program, compared to coronary patients without PAD [71]. It seems possible to intervene on certain features of the patients’ personality, essentially on the affective
aspect. So, the prevalence of profile D, representing an emergent factor of the cardiovascular illnesses [106], decreases after cardiac rehabilitation [109]. Such effects have not been investigated so far specifically in patients with PAD.

1.2.5. On the cardiovascular risk factors

Proofs are numerous on the impact of physical activity on reduction of cardiovascular risk factors, like arterial hypertension [77], type 2 diabetes [9], dyslipaemia with decrease of LDL-cholesterol rate [82], of triglycerides and increase of HDL-cholesterol [115], or overweight in association of course with measures for diet [128]. The exercise represents in addition a help in smoking cessation [154].

1.2.6. On the physiopathological abnormalities of the atheroma

In patients with PAD, physical activity has proven effects on some of the abnormalities, which take part in the different steps of the constitution of the atheromatous lesion and of its possible thrombosis evolution [20]. It is particularly involved in the improvement of the peripheral endothelial dysfunction [14], showed by a post-ischemic dilation increase of the humeral artery [92], and by an elevation of the plasmatic nitrite concentration, testifying the endothelial production of Nitric Oxide [1]. There is also an improvement of the blood rheology [5], of the insulino-resistance [27], the importance of which is correlated to the seriousness of PAD and to its functional consequences [46], and of the frequent inflammatory syndrome [148]. It is also probable that, like in the coronary patient, the reconditioning to exercise lowers, during the course of PAD, the hyperadrenery-related neurovegetative dysregulation [85], the endothelial coronary dysfunction [143], the hyperactivity of the plasmatic renin [40], and that, like during chronic cardiac insufficiency [155], it increases the number of endothelial progenitor-cells in PAD [126].

1.2.7. On morbidity and mortality

Mortality is important in patients with PAD. Mainly from cardiovascular origin, it is close to 50% at 10 years [36]. The risk of mortality is identical for either symptomatic or non-symptomatic PAD [34]. Unlike coronaropathy for which the demonstration by meta-analysis of a 30% mean decrease of mortality due to reconditioning to exercise [145] has been a determining factor for the development of cardiac rehabilitation, no study has been conducted on important cohorts of patients with PAD in this perspective, the main part of the work concentrating on the physical impacts [161]. It should be noted however that in a population of patients selected on a systolic pressure index less than 0.9, a mortality decrease (divided by 3) on a 5-year follow-up has been demonstrated, in the patients with high physical activity in current life, compared with hypoactive patients [52]. This impact on mortality was confirmed by another study conducted in patients with arterial claudication [51]. To our knowledge, only a single (non randomized) study has assessed the impact on mortality at 5 years of a supervised training program conducted in 64 patients with arterial claudication during 12 weeks: decrease of 52% of cardiovascular mortality and of 30% of morbidity. This impact is probably linked to the effects of the training on risk factors and physiopathological abnormalities of the atheroma. Concerning the specific risk of stroke – twofold in case of PAD [95] – the preventive impact of rehabilitation has not been assessed as of today.

1.2.8. On quality of life

PAD is responsible for deterioration of quality of life equivalent to that seen during the other cardiovascular illnesses [119]. If quality of life improvement is one of the objectives often reported for any therapeutic intervention, and although it impacts on the survival curve [69], it is rarely measured in current practice, because it is a complex, multifactorial parameter, difficult to apprehend. During PAD, the factors interfering as a priority on quality of life are fatigue, loss of activity, social and occupational life limitation, as well as the presence of mood disorders, the first among which being depression [83]. The seriousness of the arterial lesions, through the importance of the resulting limitations and of the associated pain, interferes also. There is in particular a positive correlation between the systolic pressure index and quality of life in the chronic haemodialysed patient [22]. It is the same for the frequent co-morbidities (in particular cardiac and/or respiratory) and for the psychic and sociocultural context. The psychological dimension is particularly frequently noted during cardiovascular diseases: it is located on the perceptive side of quality of life with implication of personality type [109]. So, type D, more often found in PAD, exposes to a more important frequency of depressive syndrome with a feeling of intense fatigue [107]. Moreover, the patients often present a cognitive decline, correlated with the seriousness of PAD and independent from previous cardio- or cerebrovascular events [114]. This alteration of the cognitive function is an important factor of the level of activity and autonomy [120] and interferes thus with quality of life [156]. The deterioration of the systolic pressure index is besides correlated to this cognitive decline [15]. Lastly, the unfavourable socioeconomic context is incriminated for long in the pathogenesis of cardiovascular illnesses [122] and particularly in PAD [12]. Difficult living conditions by financial means default reduce the recourse to care and participate to the deterioration of quality of life. The most disadvantaged patients present besides the highest amputation rate [41].

Among the non-specialized questionnaires aiming to measure the modifications of quality of life in relation with rehabilitation in PAD, the SF-36 [160] is mostly used. So a recent literature review has listed 16 studies (out of a total of 23) using this questionnaire [57]. The other non-specialized questionnaires more rarely used are the SF-20 [118], the EuroQol-5D [35,138], the Profil der Lebensqualität Chronisch Kranker [71], the Sickness Impact profile [144]. On the other hand, seven studies have used PAD-specific questionnaires: the Peripheral Arterial Occlusive Disease 86 [54,67,76], the Intermittent Claudication questionnaire [21,73], the VasculoQol [121], the Sickness Impact Profile – Intermittent Claudication scale [4,144]. This review shows an improvement of quality of life.
life mainly linked to physical capacities, during the course of an exercise program. However, the specific emotional aspects or related to mental health are little modified, maybe because of a too early evaluation, since these effects take more time to be implemented than the physical impacts [152]. It should be noted that when the evaluation is made at longer term, towards the end of the rehabilitation, the improvement of quality of life is all the more noticeable since the involvement of the patients in a physical activity is strong [94]. Rehabilitation aims besides to reduce the incidence of amputations and of the deterioration of associated quality of life [108].

1.3. Rehabilitation modalities

1.3.1. Organisation

The availability of adequate technical premises of rehabilitation and of a pluridisciplinary team is a guarantee of efficacy. Simple medical advice is indeed insufficient in PAD to obtain an impact on the level of physical activity [8,101,105]. On the other hand, the programs developed in a rehabilitation unit are more efficient than home-based training [127]. As much as possible the program should be followed as outpatient [59]. In order to obtain a sufficient result on the increase of the walking distance, as many as 3 to 5 weekly sessions are necessary, each of a minimal exercise duration of 30 minutes (at the beginning, then with progressive duration increase), over a period of 3 months [16,43,102,161]. The rehabilitation programs comprise two complementary axes: the reconditioning to exercise, and the therapeutic education.

1.3.2. Reconditioning to exercise

1.3.2.1. Evaluation of the aptitude to exercise

Beyond the preliminary, compulsory, information on angiography data of the arterial network of the lower limbs (also on the abdominal aorta and the supra-aortic arterial trunks) and the anamnesis on the risk factors, this evaluation has the following objectives:

- quantifying the functional consequences of PAD and their evolution during rehabilitation;
- measuring the capacities of adaptation to exercise in order to, on one hand, tailor the rehabilitation modalities, and on the other hand, to detect any intolerance or even a contra-indication to rehabilitation.

The methods are various.

1.3.2.1.1. The measurement of the walking distance on flat ground. The measurement of the walking distance on flat ground, until appearance of a cramp imposing to stop, remains a basic clinical test, despite its little standardized characteristics and its low reproducibility [64]. Indeed it puts the patients in the usual situation of incitement of pain (control of their reality) and allows a subsequent supervision by self-measurement much more reliable than simple estimation [133], without special technical means. It represents an element of motivation to secondary prevention in patients who usually notice a widening of their walking distance during rehabilitation. It is done at a freely chosen speed, representing then the best bioenergetic efficiency [7]. It should be noted that this “comfortable” speed is slower, with a decrease of pace and of the step length, in patients with PAD, compared to healthy subjects [129]. The measurement of the cramp area allows to quantify easily the evolution during a rehabilitation program. It must however be performed under the control of a trained practitioner (most often a physiotherapist), being able to make a distinction between the symptoms of discomfort and true claudication, and to detect other limitations to walk (dysnea, angor, orthopedic, neurological problems...). It will be timed in order to calculate a walking speed and to make sure that an increase of the walking distance is not linked to slowing down of the speed.

1.3.2.1.2. The 6-minute walking test. The 6-minute walking test is frequently used, because it is standardized and validated in the functional evaluation of the chronic, disabling, diseases [53,94,97]. Actually, as it explores the endurance capacities [28], it is more appropriate for the measurement of adaptation to exercise than to the determining the pain-free walking distance, which is not its primary objective: the reported result is indeed the walking distance done during 6 min, without systematically mentioning whether this distance is limited by claudication or by the capacities of endurance (in absence of severe claudication). The mean distance measured during this 6-minute test in patients with PAD is between 382 + 12 and 433 + 11 m, according to the studies, with a good reproducibility [49,91,117,146]. It should be noted that a walking test consisting in making comings and goings of 10 meters at increasing walking speed – the shuttle walking test – revealed to be more reproducible than the 6-minute test, causing more frequently the stopping of the walk because of the onset of claudication [146].

1.3.2.1.3. A treadmill walking test. A treadmill walking test, although less physiological [55], represents the most usual means of the functional evaluation in patients with PAD [149], as it allows to follow the evolution of patients with claudication in standardized conditions of speed and slope. The measurement of the distance to cramp (pain imposing to stop the walk), although giving results with a variation range of 15 to 40%, remains more reliable and more reproducible than that of the discomfort distance (start of the pain) [30,65]. If the test is not early interrupted by claudication, it can allow to evaluate the maximal physical capacities and their evolution during training, the establishing of the useful level of this training (“target” cardiac frequency most often), and the detection of a possible intolerance to exercise (myocardial ischemia, rhythm disorders, exercise-related arterial hypertension...). It may be a test with progressive increase of the work produced. The modalities may be various, one of the most frequently used being based on a constant speed of 3.2 km/h, starting horizontally with a 2% slope increase, by stages of 2 min [99]. Modifications of these parameters do not seem to provide additional information on the follow-up of these patients [13,100]. Limitations are planned for practical reasons, concerning situations where a limitation to walking would not appear (absence of claudication): a maximal duration of
about 30 min and a maximal slope of 10 to 12% are usually proposed [30,102]. The treadmill test with constant load (fixed speed and slope) is the most frequently proposed in France. There is a wide range in the possible protocols, and a comparable reliability with that of the tests with progressive load [78]. It seems however that the protocols with a high load (for example a speed of 3.2 km/h and a 10% slope) are those, which correlate best with the severity of PAD [30,102]. It should be noted that the support handles should be used by the patient only for brief moments, to maintain balance, otherwise the evaluation of claudication is not reliable any more [48]. During the test, a transcutaneous oxygen tension (dynamic oxymetry) may be performed, the evolution of the values during the exercise and during the recovery phase being correlated to the progression of the walking distance during a rehabilitation program [24].

1.3.2.1.4. A test on ergometric bicycle. A test on ergometric bicycle presents the interest, compared to that of the treadmill, to limit the risk of fall, to reduce the impact of weight (useful in case of obesity) or of walking disorders due to some orthopedic (hip lesions, for example) or neurological abnormalities (cerebellar, extra-pyramidal syndrome, hemiparesis . . .). To be noted that out of a group of 10 subjects presenting a claudication of the calf, a test on bicycle has proved as reproducible as a test on treadmill, with the same response in terms of claudication, but with a more intense cardiopulmonary solicitation concerning cardiac frequency, VCO₂, the expiratory output and the respiratory quotient, the VO₂ peak tending to be superior without reaching the significant threshold [153]. This observation, opposite to that shown in healthy subjects [164], has no experimental explanations so far, but has led the authors to propose the test on the bicycle rather than on treadmill, when optimal intensity of exercise was investigated in these patients, in order to validate a therapeutic program or to induce cardiac stress (searching a myocardial ischemia of effort) [150].

1.3.2.1.5. Stress test with the upper limbs. Stress test developed with the upper limbs can be an alternative for the evaluation of exercise capacity when the lower limbs cannot be used at a sufficiently intense level of exercise, for example in case of severe claudication and a fortiori of amputation. As this represents an unusual exercise, unlike that soliciting the lower limbs, a preliminary habituation phase must be developed with a few preparatory sessions at light load, so that the test is not stopped prematurely by a tetanization of the forearms muscles [98]. It is a discontinued exercise test with usually stages of 1 to 2 min, interrupted by pauses of 30 to 60 sec, allowing to record good quality ECG signals and to monitor the blood pressure. The load increase must be very progressive, of about half an exercise soliciting the lower limbs, taking into account the lesser muscular volume mobilized [162]. Under these conditions the sensitivity for the detection of a myocardial ischemia is satisfying, close to that of a test developed with lower limbs [131].

There is no consensus on the most appropriate method of evaluation of the adaptation to exercise during rehabilitation programs. The choice must be made according to the pathological situation of each patient, and to the objectives: quantifying the consequences of PAD on walking and/or evaluating adaptation to exercise. So it seems appropriate in current practice to combine a free walking test and a standardized test on ergometer (non or little limited by claudication) at start and at end of rehabilitation. For example, a patient with a very severe claudication interrupting very early an exercise on treadmill and on ergometric bicycle will be assessed on the combination free-walk test and exercise test on ergometer for upper limbs. Intermediate evaluations can be proposed to tailor duration and intensity of the exercises.

1.3.2.2. Training techniques

1.3.2.2.1. Global training. It aims on one hand to improve the functional status and on the other hand to optimize the systemic impacts on the physiopathological abnormalities and the risk factors related to atheroma disease. It is based on various walking exercises, as well as on training on treadmill and on different cycloergometers soliciting the lower limbs and the upper limbs. It has more important results than the analytical resistance training [92]. It is developed on different ergometers in order to diversify the exercises and to solicit a maximum of muscular volume with optimal systemic effect: treadmill, ergometric bicycle with an at least identical metabolic solicitation [153], cycloergometer for upper limbs . . . The ergometric reconditioning soliciting the upper limbs and the trunk is very interesting, as it allows an improvement of the walking distance and of the maximal exercise capacities, comparable to a conventional reconditioning implying the lower limbs [150,157]. It allows to increase the trained muscular volumes and is particularly useful when the lower limbs are not (or little) available (very severe claudication, skin disorders, neurological or orthopedic problems . . .), through a systemic effect improving the tissue oxygenation of the lower limbs [147]. The different ergometers used are mainly of concentric muscular solicitation. However, eccentric muscular reinforcement is, in the healthy subject, at the origin of a strength increase at least as important, associated with a lesser peripheral oxygen utilization [79]. Despite its potential interest during PAD, it has been evaluated during cardiovascular illnesses only in coronary patients [56]. Likewise, isokinetics has not been assessed during a rehabilitation program, but has just been used to confirm the decrease of muscular capacities in patients with PAD [33]. There is no consensus about the most efficient intensity implying the lower limbs. The question remains open, in particular concerning the interest of exercise-induced pain during reconditioning. The walking training going as far as a pain level close to claudication seems to be more efficient for an increase of the walking distance than that training being interrupted before the appearance of a painful discomfort [47]. However, it has been demonstrated that infra-pain training has a comparable efficacy to increase the walking distance, of about 120% [96]. It is probable that, more than intensity, it is the regularity of physical activity which plays a key-role in the outcome. Proprioceptive exercises, of soft, directed by breath
gymnic type, like those performed during qi-gong and tai-chi, are often associated with conventional training, for their effects on the cardiorespiratory system and on possible balance disorders [70]. Moreover, thanks to their relaxing aspect, they improve the feeling of well-being. Lastly, more and more often sports-type physical activities are proposed, adapted to the patient’s profile and capacities, with no aim of result of course, but in insisting on the “education to health” aspect and so preparing the phase leading to autonomy.

1.3.2.2.2. Analytical training. It is about lower limbs resistance training, aiming for the same metabolic and endothelial effects as global training [38]. As a lesser muscular volume is solicited compared to global training, the systemic effects are more limited, and this training is less often recommended [16,92]. As the objective is first to improve the muscular aerobic capacities, the dynamic contractions (lesser elevation of intramuscular pressure, better tolerance), preferably eccentric [79], will be favored. Muscular recruitment will be done from the periphery to the root of the limb [158], at a frequency of 20 to 30 contractions per minute, according to clinical tolerance. The occurrence of a muscular cramp should be avoided by adapting resistance and duration of the training: prior determination of the rate (usually 70%) of the number of contractions (at a 30/min frequency) against resistance inducing muscular ischemia. However, another objective of this training is to reduce the loss of strength and to allow to enhance the activity level of these patients. In this perspective, a high intensity training (85 to 90% of maximal strength), but of short duration, may be proposed together with the aerobic reconditioning [159]. In case of femoro-popliteal occlusion or of only distal lesions, and in order to prevent a thigh derivation of arterial flow, special attention must be given to limit the reinforcement exercises implying the buttock and thigh muscles.

1.3.2.2.3. Other rehabilitation techniques. Other rehabilitation techniques will be applied according to the pathological situations:

- respiratory physiotherapy, for example in case of associated COPD attack;
- manual drainage and elastic brace in case of leg oedema (intricated veinolymphatic problems), under the condition that ischemia has been eliminated beforehand (transcutaneous oxygen tension and systolic pressure index);
- passive mobilizations in case of retraction and articular stiffness (particularly frequent during diabetes);
- intermittent pneumatic compression: this has been tested in the arterial claudication with an increase of the walking distance comparable to that found at the end of a training program [31], associated to neutralization of platelet activation and improvement of the endothelial function [142]. However, the rareness of experimental works, the very inconvenient aspect of the protocols (sessions of 2.5 h/day at least for 5 months!), and anyway the necessity to prolong its effects by an adapted physical activity do not allow to propose this technique as a routine for the time being;
- muscle electrostimulation: applied at low frequency and so reinforcing the oxidative metabolism, it has shown its interest in the reduction of the muscular reconditioning during chronic heart failure [19]. In PAD, experimental proofs are less numerous. However, significant improvement (+95%) of the maximal walking distance has been demonstrated following a low frequency (6 Hz) electrostimulation program of calf muscles, three times 20 min per day during 4 weeks [2]. It seems also that the impact is not limited to the improvement of the muscular metabolism, but that the muscular perfusion has improved as well [135], which is at least in part due to the reduction of the endothelial dysfunction observed in the animal [74]. In view of these effects and of the good tolerance, electrostimulation can be proposed as a complement or an alternative to exercise reconditioning, especially when physical training is difficult to implement because of an associated incapacity, like a unilateral amputation of lower limb [112];
- balneotherapy and crenotherapy may represent an interesting contribution, provided that they are implemented in the context of a true exercise training and therapeutic education program.

1.3.2.3. Therapeutic education. The aim is to make the patient feel responsible for the management of their chronic disease. This is compulsory, especially for the long-term observance of the hygiенно-dietetic rules, allowing to perpetuate the effects of rehabilitation [50,53]. It focuses on the optimal control of the risk factors, which has proven its efficacy on reduction of morbi-mortality, the improvement of the functional status and of quality of life [58]. Of course, as already highlighted, the personality profile must be considered for therapeutic education, the particular frequency of type D profile being problematic in the adherence of the patients to a program of mid- to long-term cardiovascular risk decrease [67,123].

Therapeutic education is the subject of recommendations [60]. It questions the traditional relationship doctor-patient – “knowledge-holder vs. ignorant” – and needs a new logic, very open to the patient, based on listening and exchange, oriented towards useful knowledge and not necessarily scientifically exhaustive. It implies each team member on a daily basis and starts by an evaluation of the real-life experience and of the “competencies” of the patient about PAD, about its functional and medical consequences, of the favorable effects of an optimal control of the risk factors. The patients’ personality and their adherence capacity to a modification of life hygiene must be assessed, as well as possible mood disorders through the systematic use of specific score like the Hospital Anxiety and Depression scale [62]. Educative sessions will be proposed and, once the knowledge is better integrated, personal objectives will be set, always while dialoguing with the patients and in adequacy with their expectations and their life project:

- smoking cessation of course, which reduces mortality at 10 years by at least a third [72]. To be noted that the continuation of tobacco intoxication during an exercise
program restricts the improvement of pain-free walking distance [102]. Cessation must be based on a long-term strategy, as the risk of relapse is important. The management must be tailored: behavioral therapies, nicotine substitutes, pharmacotherapies (bupropion, ...);

- medication observance: it is important, as the patients compliance is, here also, often insufficient [10]. This observance concerns the drugs recommended in PAD: conversion enzyme inhibitors, statins, platelet antiaggregants [61]. The treatment of the associated risk factors is of course also included, with the same usual statement of a lack of observance, which participates, especially in these patients, in the insufficiency of treatment of arterial hypertension [93]. Type 2 diabetes is a particular problem, as if the optima control of the biological parameters is recommended, it has not demonstrated a regular decrease of the amputation rate and of mortality during PAD [37];

- adapted physical activity: based on precise recommendations, this activity must be prescribed, as for a drug, in terms of duration, frequency and intensity. The practical recommendations are more based on the observations of tolerance and efficacy of the training program. They are centered on training to endurance of moderate intensity, of at least 30 min, 5 days a week. If this global activity is more intense (for example jogging instead of walking), it can be limited to 20 min 3 days a week. Moderate muscle resistance training is recommended at least two times a week, soliciting eight to 10 important muscular groups, at a rate of 8 to 15 exercises for each. In the patients aged more than 65, suppleness and balancing exercises are recommended, at least two times a week during at least 10 min;

- nutritional education: it is the Mediterranean diet that demonstrated a significant and prolonged impact on the evolution of the cardiovascular diseases, in comparison with a simply “cautious” diet [29]. There is no argument on the superiority of the dietary educational methods (simple advices or behavioral approach) [84]. On big cohorts of patients however, there are arguments for the strict respect of the recommendations which increase the impact on global and of cardiovascular origin mortality, while improving quality of life [137]. The mortality decrease related to the Mediterranean diet in post-infarction is close to 20% [151]. This effect on mortality has not been evaluated during PAD, but it has been shown that a good adherence to this diet decreases the risk of developing this disease [25]. The expected results of the association of the hygierno-dietary measures and the pharmacological treatment must be regularly reminded to the patients: body mass index less than 25 kg/m², HbA1c < 6.5%, LDL-cholesterol less than 1 g/l, systolic blood pressure less than 140 mmHg (130 mmHg if diabetes or renal insufficiency). This therapeutic education continues during rehabilitation, involving the different team members, and imposes interdisciplinarity with sharing of knowledge and competencies in the field. It can be formalized under different ways: personalized discussions, thematic meetings (tobacco, food, physical activity, drug observance), with a possible participation of the patient’s family circle. It will give rise to the production of a document collecting the quantified objectives and the tailored means to achieve them. This document can be the patient’s follow-up booklet where the main clinical and biological controlled parameters are collected at long-term. When necessary, a fitting-out of the place of living and/or the work place will be proposed (intervention of the occupational therapists).

The training to auto-surveillance is particularly important: checking of the walking distance, awareness to the first signs of a peripheral hemodynamic decompensation, early detection of cardiac manifestations (angor, dyspnea, fatigue, malaise…), respecting the recommendations concerning the biological controls and the angiological check-up. Prevention of plantar lesions is particularly important. It goes through the detection of orthopedic and neuropathic abnormalities, a possible orthosis, the implementation of the strict rules of feet hygiene and shoe fitting, of regular feet care, and of course an unfailing self-surveillance. At the end of the rehabilitation, the communication of all this information to the medical staff who will take over (general practitioner, angiologist, cardiologist, vascular surgeon, diabetologist, tobaccologist) is essential with, in particular, the necessity to plan the different appointments for patients often non-compliant.

1.4. Indications

Rehabilitation is part of the first intention treatments during PAD. However, taking into account its high prevalence – it concerns one fifth of the patients aged more than 65 years [34] – it is of course not possible to propose a rehabilitation program to all patients, whether symptomatic or not. The recommendations by the Health Authorities are then to propose rehabilitation in specialized structures to the “most severe patients”: “symptomatic patients, non-controlled cardiovascular risk factors, established coronary attack and disinsertion risk” [61]. For the patients not benefitting from a rehabilitation program, intervention programs (in particular of coaching type) should be proposed, aiming a long-lasting modification of living hygiene and implying particularly a walking activity at least 3 times a week [91].

Rehabilitation will so be particularly indicated when the functional incidences – especially the limitation of the walking distance – are important, when the risk factors – especially smoking intoxication – are non controlled and when the predictable compliance is correct [123]. Severe mood disorders are indeed an obstacle to adherence to this rehabilitation [75]. The “type”-patient, subject to rehabilitation is therefore the one presenting chronic arterial claudication with non-controlled risk factors, functional limitations with incidences on social and occupational life, and deterioration of quality of life [88]. The outcomes will have to be analyzed on these different aspects (in particular, walking test performance) and, in absence of efficacy, confronted with the angiological data in order to re-discuss the indications for revascularization. An exercise training program is therefore an element contributing
to therapeutic decision in case of femoro-popliteal lesion, representing the first-intent treatment before possible revascularization [89]. More and more often, it may be a polyvascular patient diagnosed with atheromatous illness and symptomatic coronary [71] or cerebral predominant [6] presentation. The systematic screening of PAD lesions, which degrades the prognosis, is justified in these patients, as these lesions impose a reinforcement of the measures aiming an optimal control of the risk factors and a tailoring of the exercise modalities [71]. The more the arterial lesions are proximal, threatening, badly compensated for, the more revascularization is indicated; rehabilitation can be associated to facilitate the functional recovery and participate to the secondary prevention in the frame of global management [87]. It is even more the case for ischemia of limbs for which rehabilitation represents only a support with regard to revascularization every time this is possible, with the aim of preserving the limb [26,86], taking into account the good results obtained particularly by the development of endovascular treatments in patients with numerous co-morbidities [39]. The progress to come in these endovascular techniques of the treatment of the atheromatous plaque, will probably lead in the next years to re-discuss the place of rehabilitation during PAD.

1.5. Conclusion

Although it is part of the A level recommendations [61,88,103,104], rehabilitation is still underutilized in this indication [3,132]. It improves however duration and quality of life of the patient with PAD. It has indeed more ambitious objectives than the mere increase of the walking distance: modifying the way of life, improving the level of activity, decreasing morbidity-mortality. The modalities of its implementation, based on a global approach combining exercise training and therapeutic education, are better and better established. They are based on the availability of a pluridisciplinary team and of specialized facilities. The main limitation to the development of rehabilitation remains the insufficiency in number of such structures.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

2. Version française

2.1. Introduction

Malgré l’importance de sa prévalence et de sa morbi-mortalité, l’artériopathie des membres inférieurs (AMI) reste trop souvent sous-estimée et est insuffisamment prise en charge [33]. Ainsi en France les patients porteurs d’AMI restent encore exclus des programmes d’intervention et ne bénéficient pas des mêmes mesures de prévention secondaire que les patients coronariens [11]. La réadaptation est recommandée comme un traitement conservateur de référence au cours de l’AMI [61,88,103,104,140]. Elle associe un programme personnalisé de reconditionnement à l’effort et le contrôle optimal des facteurs de risque, basé sur l’éducation thérapeutique [59,103]. Elle est encore très largement sous utilisée [44,132], ce qui justifie de faire le point sur ses effets répertoriés, ses modalités de mise en œuvre, ainsi que sur ses indications.

2.2. Effets de la réadaptation au cours de l’AMI

2.2.1. Sur les capacités physiques

C’est l’augmentation de la distance de marche qui en cas de claudication représente l’impact le plus démonstratif de l’intérêt du reconditionnement à l’effort au cours de l’AMI. Évaluée sur des cohortes importantes, elle est en moyenne de 150 % [81,161]. Cet effet sur les capacités de marche est retrouvé également chez les patients porteurs d’AMI, mais non claudicants [92], qui présentent habituellement des limitations fonctionnelles [90]. À l’amélioration de la distance de marche s’associe une augmentation du pic de VO2 de 20 à 30 %, concourant à la meilleure tolérance à l’effort et la réduction de la fatigue physique [63], chez des patients présentant préalablement une dégradation de leurs capacités maximales [116]. Bien que la fatigue représente une dimension essentielle des maladies cardiovasculaires [18], l’impact de la réadaptation sur son évolution n’a été que rarement étudié. Cela tient probablement au caractère multifactoriel de ce symptôme, comportant à la fois des aspects physiques et psychiques et rendant son analyse délicate [113].

Concernant les mécanismes expliquant cette amélioration physique, le premier est lié à l’augmentation des capacités oxydatives musculaires [63], en relation avec la reconstitution du matériel enzymatique mitochondrial [66]. Ainsi à l’issue d’un programme de reconditionnement, la réserve de phosphocreatine musculaire est moins rapidement utilisée au cours de l’effort et sa reconstitution est plus rapide à la phase de récupération [38]. La meilleure perfusion musculaire, par réduction de la dysfonction endothéliale, concourt à cette amélioration du métabolisme oxydatif [14]. La conjonction de ces effets métaboliques et microcirculatoires explique probablement la plus importante désaturation en oxygène musculaire, objectivée par spectroscopie infrarouge au cours de l’effort, à l’issue d’un programme d’entraînement, du fait de l’amélioration de l’extraction et de l’utilisation périphérique de l’oxygène [42]. Ces résultats sur les capacités musculaires paraissent au moins identiques à ceux liés à une revascularisation par angioplastie ou pontage [111,139,163], à la différence qu’il n’existe pas après entraînement d’augmentation de la pression artérielle à la cheville [17,161]. Par ailleurs, la démonstration d’un développement de la circulation collatérale sous l’effet du reconditionnement à l’effort n’a jamais été vraiment faite [140].

2.2.2. Sur les activités de la vie quotidienne

L’élargissement de la distance de marche, la meilleure adaptation à l’effort avec réduction de la fatigue, la moindre incidence de la douleur, le versant éducatif et la reprise de confiance, concourent à la reprise des activités de la vie...
quotidienne chez les patients ré entraînés [117]. Ainsi un transfert est habituellement constaté entre l’augmentation des capacités physiques et l’amélioration du niveau des activités de la vie courante, évaluée à 30 % par accélérométrie [49]. En revanche, il n’existe pas de données disponibles concernant l’impact sur l’insertion professionnelle.

2.2.3. Sur les troubles de l’humeur
La dépression est identifiée comme un facteur de risque fort au cours des maladies cardiovasculaires [110], venant dégrader significativement la courbe de survie, en particulier au décours de la revascularisation d’une AMI [23]. Elle implique bien sur des facteurs psychosociaux, mais également certaines anomalies biologiques impliquant les cellules endothéliales [80], les voies sérotoninergiques, l’axe hypothalamo-hypophysaire, l’inflammation, le système neurovégétatif... [134]. Elle existe chez 30 à 60 % des patients présentant une AMI, sa prévalence augmentant avec l’âge, l’altération des capacités physiques [124] et l’existence de douleurs [136]. Les programmes d’entraînement participent à l’amélioration de ce syndrome dépressif [130], sans qu’il y ait actuellement de preuves d’un impact sur la courbe de survie, à l’instar des patients coronariens [141].

2.2.4. Sur les aspects de personnalité
Les conditions psychologiques, en particulier le profil de personnalité, sont impliquées dans l’évolution des maladies cardiovasculaires. Ainsi le type A, caractérisé par des éléments de compétitivité et d’impatience a été de longue date incriminé dans la survenue d’atteintes coronariennes [45], alors que le type D qui comporte des éléments prédominants d’inhibition sociale et de répression des émotions est plus souvent évoqué chez les patients présentant une AMI [3]. Cette différence de profil psychologique entre patients à expression différente (coronarien versus claudiquant artériel) d’une même maladie, l’athérome, communément constatée par le clinicien en pratique courante n’a cependant pas donné lieu à des études de cohortes importantes. Elle a pourtant des implications dans la prise en charge des patients, en particulier dans leurs capacités d’adhésion à un programme d’éducation thérapeutique [121] : plus grande combativité pour le profil A et donc meilleur pronostic dans le contrôle des facteurs de risque, déni habituel pour le profil D limitant l’adhésion à un programme de prévention secondaire. Les patients présentant un profil de type D vont plus volontiers mettre en œuvre des stratégies d’évitement des situations d’inconfort et de douleurs, ce qui du fait de l’hypo activité ainsi induite va les engager d’autant plus dans la spirale du déconditionnement et de l’aggravation progressive. Cela explique probablement en partie les difficultés d’adhésion à la réadaptation des patients coronariens porteurs d’AMI, avec abandon plus fréquent en cours de programme de réadaptation cardiaque, comparativement aux patients coronariens sans AMI [71]. Il semble qu’il soit possible d’intervenir sur certains traits de la personnalité des patients, essentiellement sur le versant affectif. Ainsi la prévalence du profil D, qui représente un facteur émergent des maladies cardiovasculaires [106], diminue après réadaptation cardiaque [109]. De tels effets n’ont pas été recherchés à ce jour spécifiquement chez des patients porteurs d’AMI.

2.2.5. Sur les facteurs de risque cardiovasculaire
Les preuves sont nombreuses de l’impact de l’activité physique sur la réduction des facteurs de risque cardiovasculaire, que ce soit l’hypertension artérielle [77], le diabète de type 2 [9], les dyslipidémies avec diminution du taux de LDL-Cholestérol [82], des triglycérides et augmentation du HDL-Cholestérol [115], la surcharge pondérale en association bien sur avec les mesures diététiques [128]. L’exercice représente de plus une aide au sevrage tabagique [154].

2.2.6. Sur les anomalies physiopathologiques de l’athérome
Au cours de l’AMI l’activité physique a des effets démontrés sur certaines des anomalies qui participent aux différentes étapes de la constitution de la lésion athéromateuse et de son évolution thrombotique éventuelle [20]. Elle est en particulier à l’origine d’une amélioration de la dysfonction endothéliale périphérique [14], objectivée par l’augmentation de la dilatation post ischémique de l’artère humérale [92] et par l’élévation de la concentration des nitrites plasmatiques, qui témoignent de la production endothéliale de NO [1]. Il existe également une amélioration des anomalies hémoréologiques [5], de l’insulino-résistance [27] dont l’importance est corrélée à la gravité de l’AMI et à ses répercussions fonctionnelles [46], et du fréquent syndrome inflammatoire [148]. Il est probable également que, comme chez le patient coronarien, le reconditionnement à l’effort réduise au cours de l’AMI la dysrégulation neurovégétative avec hyperadrénérégie [85], la dysfonction endothéliale coronarien [143], l’hyperactivité de la rénine plasmatique [40], et que, comme au cours de l’insuffisance cardiaque chronique [155], il augmente le nombre de cellules souches endothéliales au cours de l’AMI [126].

2.2.7. Sur la morbidité et la mortalité
La mortalité est importante au cours de l’AMI. Essence-miel d’origine cardiovasculaire, elle avoisine en effet 50 % à dix ans [36]. Le risque de mortalité est identique que l’AMI soit symptomatique ou non [34]. À la différence de la coronaropathie pour laquelle la démonstration par méta-analyse d’une diminution moyenne de 30 % de la mortalité lié au reconditionnement à l’effort [145] a été un élément déterminant pour le développement de la réadaptation cardiaque, il n’y pas eu d’étude menée sur des cohortes importantes de patients porteurs d’AMI dans cette perspective, l’essentiel des travaux s’étant intéressé aux impacts physiques [161]. À noter cependant qu’il a été objectivé dans une population de patients sélectionnés sur un index systolique de pression inférieur à 0,9, une diminution de la mortalité (divisée par 3) sur un suivi à cinq ans, chez les patients ayant une activité physique élevée dans la vie courante, comparativement à des patients hypoactifs [52]. Cet impact sur la mortalité a été confirmé par une autre étude conduite chez des patients claudicants artériels [51]. À notre connaissance une seule étude (non randomisée) a évalué
l’impact sur la mortalité à cinq ans d’un programme supervisé d’entraînement mené chez 64 patients claudiquants artériels pendant 12 semaines : diminution de 52 % de la mortalité cardiovasculaire et de 30 % de la morbidité [125]. Cet impact est probablement lié aux effets de l’entraînement sur les facteurs de risque et les anomalies physiopathologiques de l’athérome. Concernant le risque spécifique d’accident vasculaire cérébral – double en cas d’AMI [95] – l’impact préventif de la réadaptation n’a pas été à ce jour évalué.

2.2.8. Sur la qualité de vie

L’AMI est responsable d’une dégradation de la qualité de vie comparable à celle constatée au cours des autres maladies cardiovasculaires [119]. Si l’amélioration de la qualité de vie est un des objectifs souvent rapportés pour toute intervention thérapeutique, et bien qu’elle impacte sur la courbe de survie [69], elle est rarement mesurée en pratique courante, car il s’agit d’un paramètre complexe multifactoriel et difficile à appréhender. Au cours de l’AMI les facteurs qui interviennent prioritaires sur la qualité de vie sont la fatigue, la perte d’activité, les limitations dans la vie sociale et professionnelle, ainsi que l’existence de troubles de l’humeur, au premier rang desquels se trouve la dépression [83]. La gravité des lésions artérielles, par l’importance des limitations qu’elle entraîne et les algies associées, interfère également. Il existe en particulier une corrélation positive entre l’index systolique de pression et la qualité de vie chez l’hémodialysé chronique [22]. Il en est de même des fréquentes co-morbidités (en particulier cardiaques et/ou respiratoires) et du contexte psychique et socioculturel. La dimension psychologique est en particulier souvent évoquée au cours des maladies cardiovasculaires. Elle intervient sur le versant perceptif de la qualité de vie avec implication du type de personnalité [109]. Ainsi le type D, plus souvent retrouvé au cours de l’AMI, expose à une fréquence plus importante de syndrome dépressif avec sensation de fatigue intense [107]. De plus les patients présentent souvent un déclin cognitif, corrélé à la gravité de l’AMI et indépendant d’événements cardio ou cérébrovasculaires préalables [114]. Cette altération de la fonction cognitive est un facteur important du niveau d’activité et d’autonomie [120] et interfère donc avec la qualité de vie [156]. La dégradation de l’index systolique de pression est d’ailleurs corrélée à ce déclin cognitif [15]. Enfin le contexte socioéconomique défavorable est depuis longtemps incriminé dans la pathogénie des maladies cardiovasculaires [122] et en particulier de l’AMI [12]. Les conditions d’existence difficiles par carence de moyens financiers réduisent le recours aux soins et participent à la détérioration de la qualité de vie. Ce sont d’ailleurs les patients les plus défavorisés qui vont présenter le taux le plus élevé d’amputations [41].

Parmi les questionnaires généralistes visant à la mesure des modifications de la qualité de vie liés à la réadaptation au cours de l’AMI, c’est le SF-36 [160] qui a été le plus souvent utilisé. Ainsi une revue récente de la littérature a répertorié 16 études (sur un total de 23) utilisant ce questionnaire [57]. Les autres questionnaires généralistes plus rarement utilisés sont le SF-20 [118], l’EuroQol-5D [35,138], le Profil der Lebensqualitat Chronisch Kranker [71], le Sickness Impact Profile [144]. Sept études ont, en revanche, utilisé des questionnaires spécifiques de l’AMI : le Peripheral Arterial Occlusive Disease 86 [54,67,76], le Intermittent Claudication Questionnaire [21,73], le VascuQol [121], le Sickness Impact Profile – Intermittent Claudication Scale [4,144]. Cette revue objective une amélioration de la qualité de vie essentiellement liée aux capacités physiques, au décours d’un programme d’exercices. En revanche, les aspects spécifiquement émotionnels ou liés à la santé mentale sont peu modifiés, peut être du fait de l’évaluation trop précoce, alors que ces effets mettent plus de temps à s’installer que les impacts physiques [152]. À noter que lorsque l’évaluation est effectuée à plus long terme à l’issue de la fin de la réadaptation, l’amélioration de la qualité de vie est d’autant plus marquée que l’implication des patients dans une activité physique régulière est forte [94]. La réadaptation vise par ailleurs à réduire l’incidence des amputations et la dégradation de qualité de vie associée [108].

2.3. Modalités de la réadaptation

2.3.1. Organisation

La mise à disposition d’un plateau technique adapté et d’une équipe pluridisciplinaire est un gage d’efficacité. En effet le simple conseil médical est insuffisant au cours de l’AMI pour obtenir un impact sur le niveau d’activité physique [8,101,105]. Par ailleurs les programmes développés dans une unité de rééducation sont plus efficaces qu’un entraînement à domicile [127]. Chaque fois que possible la prise en charge se fera en ambulatoire [59]. Afin d’obtenir un résultat suffisant sur l’augmentation de la distance de marche, un nombre de trois à cinq séances par semaine est nécessaire, d’une durée minimale de 30 minutes d’exercice chacune (au début, avec ensuite augmentation progressive de la durée), sur une période de trois mois [16,43,102,161]. Les programmes de réadaptation comportent deux axes complémentaires : le reconditionnement à l’effort et l’éducation thérapeutique.

2.3.2. Le reconditionnement à l’effort

2.3.2.1. Evaluation de l’aptitude à l’effort

Au-delà des informations préalables indispensables que sont les données angiologiques sur le réseau artériel des membres inférieurs (également sur l’aorte abdominale et les troncs artériels supra aortiques) et anamnestiques sur les facteurs de risque, cette évaluation a pour objectifs de :

- quantifier les répercussions fonctionnelles de l’AMI et leur évolution sous l’effort de la rééducation ;
- mesurer les capacités d’adaptation à l’effort afin, d’une part de guider les modalités du reconditionnement, et d’autre part de dépister une intolérance voire une contre indication au reconditionnement.

Les modalités en sont diverses.

2.3.2.1.1. La mesure de la distance de marche sur terrain plat

La mesure de la distance de marche sur terrain plat, jusqu’à l’apparition de la crampe imposant l’arrêt, reste un test clinique de base, malgré son caractère peu standardisé et sa
reproductibilité faible [64]. Elle met en effet le patient en situation habituelle de provocation de sa douleur (contrôle de sa réalité) et permet ultérieurement une surveillance par auto-mesure beaucoup plus fiable que la simple estimation [133], sans moyen technique particulier. Elle représente un élément de motivation à la prévention secondaire chez le patient qui constate habituellement un élargissement de son périmètre de marche au cours de la rééducation. Elle est effectuée à vitesse librement choisie, car représentant alors la meilleure efficience bioénergétique [7]. À noter que cette vitesse « confortable » est plus lente, avec diminution de la cadence et de la longueur du pas, au cours de l’AMI, comparativement à des sujets sains [129]. La mesure du périmètre de crampe permet de quantifier facilement l’évolution au cours d’un programme de réadaptation. Elle doit cependant être effectuée sous contrôle d’un praticien formé (le plus souvent un kinésithérapeute), sachant faire la distinction entre les symptômes de gêne et la claudication vraie, et dépister d’autres limites à la marche (dyspnée, angor, problèmes orthopédiques, neurologiques…). Elle sera chronométrée afin de calculer une vitesse de marche et s’assurer ainsi qu’une augmentation du périmètre de marche ne soit pas liée à un ralentissement de la vitesse.

2.3.2.1.2. Le test de marche de six minutes. Le test de marche de six minutes est fréquemment utilisé, car il est standardisé et validé dans l’évaluation fonctionnelle des maladies chroniques incapacitantes [53,94,97]. En fait, explorant les capacités endurantes [28], il est plus approprié à la mesure de l’adaptation à l’effort qu’à la détermination d’un périmètre qui n’est pas son objectif premier : le résultat rapporté est en effet la distance de marche effectuée durant six minutes, sans que soit systématiquement précisé si cette distance est limitée par la claudication ou par les capacités endurantes (en l’absence de claudication serrée). La distance moyenne mesurée au cours de ce test de six minutes chez des patients porteurs d’AMI varie selon les études entre 382 ± 12 et 433 ± 11 m, avec une bonne reproductibilité [49,91,117,146]. À noter qu’un test de marche consistant à effectuer des allers retours de 10 m à vitesse de marche croissante – le Shuttle Walking Test – s’est avéré plus reproductible que le test de six minutes, en provoquant de façon plus fréquente l’arrêt de la marche liée à la survenue d’une claudication [146].

2.3.2.1.3. Un test de marche sur tapis roulant. Un test de marche sur tapis roulant, bien que moins physiologique [55], représente le moyen le plus habituel de l’évaluation fonctionnelle au cours de l’AMI [149] car il permet de suivre l’évolution des patients claudiquants dans des conditions identiques de vitesse et de pente. La mesure de la distance de crampe (douleur imposant l’arrêt de la marche), bien que donnant des résultats avec un coefficient de variation de 15 à 40 %, reste plus fiable et plus reproductible que celle de la distance de gêne (début d’installation de la douleur) [30,65]. Si le test n’est pas interrompu précocement par une claudication il peut permettre l’évaluation des capacités physiques maximales et leur évolution sous l’effet du reconditionnement, la détermination du niveau utile de ce reconditionnement (fréquence cardiaque « cible » le plus souvent), et le dépistage d’une éventuelle intolérance à l’effort (ischémie myocardique, troubles du rythme, hypertension artérielle d’effort…).

Il peut s’agir d’un test avec augmentation progressive du travail produit. Les modalités peuvent en être diverses, une des plus utilisées étant basée sur une vitesse constante à 3,2 km/h débutant horizontalement avec augmentation de 2 % de la pente, par paliers de deux minutes [99]. Des modifications de ces paramètres ne semblent pas apporter d’informations supplémentaires dans le suivi de ces patients [13,100]. Des limites sont prévues pour des raisons pratiques, concernant les situations au cours desquelles une limitation à la marche n’apparaîtrait pas (absence de claudication) : une durée maximale de l’ordre de 30 minutes et une pente maximale de 10 à 12 % sont habituellement proposées [30,102].

Un test sur tapis roulant à charge constante (vitesse et pente fixes) est plus souvent proposé en France. Il existe là aussi un large éventail dans les protocoles possibles et une fiabilité comparable à celle des tests à charge progressive [78]. Il semble cependant que ce soit les protocoles à charge élevée (par exemple vitesse à 3,2 km/h et pente de 10 %) qui soit les plus corrélés à la gravité de l’AMI [30,102]. À noter que les poignées de soutien ne doivent être utilisées par le patient que pour de brefs moments, pour maintenir l’équilibre, sinon l’évaluation de la claudication n’est plus fiable [48]. Au cours du test une mesure transcutanée étagée de la pression partielle en oxygène peut être effectuée (oxymétrie dynamique), l’évolution des valeurs durant l’effort et à la phase de récupération étant corrélée à la progression du périmètre de marche au décours d’un programme de reconditionnement [24].

2.3.2.1.4. Un test sur bicyclette ergométrique. Un test sur bicyclette ergométrique présente l’intérêt par rapport à celui sur tapis roulant de limiter le risque de chute, de réduire l’impact du poids du corps (utile en cas d’obésité) ou de troubles de la marche liés à certaines anomalies orthopédiques (lésions de la hanche par exemple) ou neurologiques (syndromes cérébelleux, extrapiramidaux, hémiparésie…). À noter que sur un groupe de dix sujets présentant une claudication du mollet, un test sur bicyclette s’est avéré aussi reproductible qu’un test sur tapis roulant, avec le même niveau de réponse en termes de claudication, mais avec une sollicitation cardio-pulmonaire plus intense concernant la fréquence cardiaque, la VCO₂, le débit respiratoire et le quotient respiratoire, le pic de VO₂ tendant à être supérieur sans atteindre le seuil de significativité [153]. Cette constatation, inverse à celle objectivée chez le sujet sain [164], n’a pas d’explications expérimentales actuellement, mais a conduit les auteurs à proposer le test sur bicyclette plutôt que sur tapis, lorsqu’une intensité d’effort optimale était recherchée chez ces patients, pour valider un programme thérapeutique ou pour provoquer un stress cardiaque (recherche d’une ischémie myocardique d’effort) [150].

2.3.2.1.5. Un test d’effort développé. Un test d’effort développé avec les membres supérieurs peut représenter une alternative pour l’évaluation de l’adaptation à l’effort lorsque les membres inférieurs ne sont pas utilisables à un niveau d’effort suffisamment intense, par exemple en cas de claudication serrée et a fortiori d’amputation. Dans la mesure
où il s’agit d’un effort inhabituel, à la différence de ceux sollicitant les membres inférieurs, il faut ménager une phase d’habituation préalable par quelques séances préparatoires à faible charge, afin qu’il ne soit pas stoppé prématurément par une familiarisation de la musculature des avant bras [98]. Il s’agit d’un test d’effort discontinu, comportant habituellement des paliers de une à deux minutes, entrecoupés de pause de 30 à 60 secondes, permettant de recueillir des signaux ECG de bonne qualité et de surveiller la tension artérielle. La montée en charge doit être très progressive, d’environ la moitié d’un effort sollicitant les membres inférieurs, compte tenu du moindre volume musculaire mobilisé [162]. Dans ces conditions la sensibilité pour le dépistage d’une ischémie myocardique d’effort est satisfaisante, proche de celle d’un test développé avec les membres inférieurs [131].


2.3.2.2. Les techniques d’entraînement

2.3.2.2.1. L’entraînement global. Il vise, d’une part, à améliorer les capacités physiques et, d’autre part, à optimiser les impacts systémiques sur les anomalies physiopathologiques et les facteurs de risque liés à la maladie athéromateuse. Il repose sur des exercices variés de marche, ainsi que sur l’entraînement sur tapis roulant et sur différents cycloergomètres sollicitant les membres inférieurs et les membres supérieurs. Il a des effets plus importants que le renforcement analytique contre-résistance [92]. Il est développé sur différents ergomètres de façon à varier les exercices et à recruter un maximum de volume musculaire avec des effets systémiques optimaux : tapis roulant, bicyclette ergométrique à l’origine d’une sollicitation métabolique au moins identique [153], cycloergomètre à membres supérieurs… Le reconditionnement ergométrique sollicitant les membres supérieurs et le tronc est très intéressant, car il permet une amélioration de la distance de marche et des capacités maximales d’effort comparable à un reconditionnement conventionnel impliquant les membres inférieurs [150,157]. Il permet d’augmenter les volumes musculaires entrainés et est particulièrement utile lorsque les membres inférieurs ne sont pas (ou peu) utilisables (claudication très serrée, troubles trophiques, problèmes neurologiques ou orthopédiques…), par un effet systémique améliorant l’oxygénation tissulaire au niveau des membres inférieurs [147]. Les différents ergomètres utilisés sont à prédominance de sollicitation musculaire concentrique. Pourtant le renforcement musculaire excentrique est, chez le sujet sain, à l’origine d’un gain de force au moins aussi important associé à une moindre utilisation périphérique de l’oxygène [79]. Malgré son intérêt potentiel au cours de l’AMI, il n’a pas été évalué au cours des maladies cardiovasculaires que chez des malades coronariens [56]. De même, l’isocinétisme n’a pas été validé au cours d’un programme de reconditionnement mais a simplement été utilisé pour confirmer la diminution des capacités musculaires au cours de l’AMI [32].

L’intensité la plus efficace des efforts impliquant les membres inférieurs ne fait pas l’objet d’un consensus. La question reste posée en particulier de la provocation ou non de l’ischémie musculaire (claudication, crame) au cours du reconditionnement. Les exercices de marche allant jusqu’à un seuil de douleur proche de la claudication semblent plus efficaces pour l’augmentation de la distance que ceux s’interrompant avant l’apparition d’une gêne douloureuse [47]. Il a été montré cependant qu’un entraînement infra douloureux avait une efficacité comparable pour augmenter la distance de marche, de l’ordre de 120 % [96]. Le débat reste ouvert, mais il est probable que, plus que l’intensité, c’est le facteur de régularité de l’activité physique qui joue un rôle clé dans les résultats.

Des exercices proprioceptifs et de type gymnique doux et rythmés par la respiration, tels qu’au cours de la pratique du qi gong et du tai chi, sont souvent associés au reconditionnement conventionnel, pour leurs effets cardiorespiratoires et sur les troubles de l’équilibre éventuels [70]. Par ailleurs, pour leur versant relaxant ils améliorent la sensation de bien être. Enfin de plus en plus souvent sont proposées des techniques d’activité physique de type sportive, adaptées au profil du patient et à ses capacités, sans soucis bien sur de performance mais en insistant sur l’aspect « éducation à la santé » et en préparant ainsi la phase d’autonomisation.

2.3.2.2.2. Le reconditionnement analytique. Il s’agit du renforcement musculaire contre résistance des membres inférieurs visant aux mêmes effets métaboliques et endothéliaux que l’entraînement global [38]. Du fait du moindre volume musculaire mobilisé par rapport à l’entraînement global les effets systémiques sont plus limités et il est moins souvent préconisé [16,92]. Dans la mesure où l’objectif est d’abord d’améliorer les capacités aérobies musculaires, on privilégiera les contractions dynamiques (moindre élévation de la pression intramusculaire, meilleure tolérance) de préférence excentrique [79]. Le recrutement musculaire se fera de la périphérie vers la racine du membre [158], à une fréquence de 20 à 30 contractions par minute, selon la tolérance clinique. On essairra d’éviter la survenue de la crampe musculaire en adaptant la résistance et la durée des exercices ; détermination préâble d’un pourcentage (habituellement 70 %) du nombre de contractions (à une fréquence de 30 par minute) contre pesanteur provoquant l’ischémie musculaire. Cependant, un autre objectif de ce renforcement est de réduire la perte de force et de permettre de rehausser le niveau d’activités de ces patients. Dans cette perspective un entraînement à intensité élevée (85 à 90 % de la force maximale), mais de durée brève,
peut être proposé en association avec le reconditionnement aérobie [159]. En cas d’occlusion fémoro-poplitée ou de lésions uniquement distales et afin de prévenir un phénomène de « vol circulatoire », on aura soin de limiter les exercices de renforcement impliquant la musculature fessière et currale.

2.3.2.3. D’autre techniques rééducatives. D’autre techniques rééducatives seront appliquées en fonction des situations pathologiques :

- kinésithérapie respiratoire, par exemple en cas de poussée d’une BPCO associée ;
- drainages manuels et contentions élastique s’il existe un œdème jambier (problèmes veino-lymphatiques intriqués), à condition qu’une ischémie ait été préalablement éliminée (mesure transcutanée de la pression partielle en oxygène et index systolique de pression) ;
- mobilisations passives en cas de rétractions et de raideurs (particulièrement fréquentes au cours du diabète) ;
- la compression pneumatique intermittente : elle a été expérimentée chez le claudicant artériel avec une augmentation de la distance de marche comparable à celle retrouvée à l’issue d’un programme de reconditionnement [31], associée à une neutralisation de l’activation plaquettaire et une amélioration de la fonction endothéliale [142]. Cependant, la rareté des travaux expérimentaux, le caractère contraignant des protocoles (séances de 2,5 h/j au minimum durant cinq mois !), et de toute façon la nécessité d’en prolonger les effets par une activité physique adaptée ne permettent pas de proposer cette technique en routine pour l’instant ;
- l’électrostimulation musculaire à visée excitomotrice : appliquée à fréquence basse et renforçant ainsi le métabolisme oxydatif, elle a montré son intérêt dans la réduction du déconditionnement musculaire au cours de l’insuffisance cardiaque [19]. Au cours de l’AMI les preuves expérimentales sont moins nombreuses. Cependant, une amélioration significative (+95 %) de la distance maximale de marche a été mise en évidence après un programme d’électrostimulation à basse fréquence (6 Hz) du triceps sural, trois fois 20 minutes par jour durant quatre semaines [2]. Il semble par ailleurs que l’impact ne se limite pas à l’amélioration du métabolisme musculaire, mais qu’il existe également une amélioration de la perfusion musculaire [135], qui passe au moins partiellement par la réduction de la dysfonction endothéliale objectivée chez l’animal [74]. Compte tenu de ces effets et de la bonne tolérance, l’électrostimulation peut être proposée comme un complément ou une alternative au reconditionnement à l’effort, notamment lorsque celui-ci s’avère difficile à mettre en œuvre du fait d’une incapacité associée, telle qu’une amputation unilatérale de membre inférieur [112] ;
- balnéothérapie et crénotherapie peuvent représenter un appoint intéressant, à condition qu’elles soient appliquées dans un contexte de véritable programme de reconditionnement et d’éducation thérapeutique.

2.3.2.3. L’éducation thérapeutique. Elle a pour but de responsabiliser le patient dans la gestion de sa maladie chronique. Elle est indispensable, notamment pour le maintien à long terme des règles hygiénodietétiques, permettant de pérenniser les effets de la réadaptation [50,53]. Elle est centrée sur le contrôle optimal des facteurs de risque, dont l’efficacité est démontrée sur la réduction de la morbi mortalité, l’amélioration du statu fonctionnel et de la qualité de vie [58].

Bien évidemment, comme déjà souligné, le profil de personnalité doit être pris en compte pour l’éducation thérapeutique, la fréquence particulière du profil de type D posant problème quant à l’adhésion des patients à un programme de réduction du risque cardiovasculaire à moyen et long terme [67,123].

L’éducation thérapeutique fait l’objet de recommandations [60]. Elle remet en cause la relation traditionnelle soignant-soigné « détenteur du savoir – ignare » et nécessite une nouvelle logique très ouverte au patient, basée sur l’écoute et l’échange, orientée vers l’acquisition de connaissances utiles et pas forcément exhaustives sur le plan scientifique. Elle implique au quotidien chaque membre de l’équipe et débute par une évaluation du vécu et des « compétences » du patient dans le domaine de l’AMI, de ses conséquences fonctionnelles et médicales, des effets bénéfiques du contrôle optimal des facteurs de risque. La personnalité du patient et sa capacité d’adhésion à une modification de l’hygiène de vie doivent être évaluées, de même que d’éventuels troubles de l’humeur par la pratique systématique de score spécifique tel que le Hospital Anxiety and Depression Scale [62]. Des séances éducatives seront proposées et, une fois les connaissances mieux intégrées, des objectifs personnalisés seront établis, toujours en concertation avec le patient et en adéquation avec ses attentes et son projet de vie :

- sevrage tabagique bien sur, qui diminue d’au moins un tiers la mortalité à dix ans [72]. À noter que la poursuite de l’intoxication tabagique au cours d’un programme d’exercice limite le gain en distance de marche sans douleur [102]. Le sevrage doit être basé sur une stratégie à long terme car les risques de rechute sont importants. La prise en charge doit être personnalisée : thérapies comportementales, succédanés nicotiniques, pharmacothérapies (bupropion, . . .) ;
- observance médicamenteuse : elle est importante car la compliance des patients est là aussi souvent insuffisante [10]. Cette observance concerne les traitements recommandés au cours de l’AMI : inhibiteurs de l’enzyme de conversion, statines, antiagrégants plaquettaires [61]. Elle intègre bien sur le traitement des facteurs de risque associés, avec la même constatation habituelle d’un manque d’observance qui participe en particulier chez ces patients à l’insuffisance de traitement de l’hypertension artérielle [93]. Le diabète de type 2 pose un problème particulier, car si le contrôle optimal des paramètres biologiques est préconisé, il n’a pas conduit à la démonstration d’une diminution constante du taux d’amputation et de la mortalité au cours de l’AMI [37] ;
- activité physique adaptée : basée sur des recommandations précises [68], cette activité doit être prescrite, au même titre qu’un médicament, en termes de durée, de fréquence et d’intensité. Les préconisations pratiques reposent de plus sur les constatations de tolérance et d’efficacité du programme de
reconditionnement. Elles sont axées sur un entraînement endurant d’intensité modérée, au moins 30 minutes, cinq jours par semaine. Si cette activité globale est plus intense (par exemple jogging par rapport à la marche), elle peut se limiter à 20 minutes trois jours par semaine. Un renforcement musculaire contre résistance modérée est recommandé au moins deux fois par semaine, sollicitant huit à dix importants groupes musculaires à raison de huit à 15 répétitions pour chaque. Chez le sujet de plus de 65 ans, des exercices de souplesse et d’équilibre sont recommandés au moins deux fois par semaine pendant au moins dix minutes ;

- éducation nutritionnelle : c’est le régime méditerranéen qui a démontré un impact significatif et prolongé sur l’évolution des maladies cardiovasculaires comparativement à un régime simplement « prudent » [29]. Il n’y a pas d’argument sur la supériorité des méthodes d’éducation diététique (simples conseils ou approche comportementale) [84]. Il en existe, en revanche, sur de grandes cohortes de patients pour le respect strict des préconisations qui augmente l’impact sur la mortalité globale et d’origine cardiovasculaire tout en améliorant la qualité de vie [137]. La diminution de mortalité liée au régime méditerranéen en post-infarctus est proche de 20 % [151]. Cet effet sur la mortalité n’a pas été évalué au cours de l’AMI, en revanche, il a été montré qu’une bonne adhésion à ce régime diminue le risque de développer cette atteinte [25].

Les résultats attendus de l’association des mesures hygiéno-diététiques et des traitements médicamenteux doivent être régulièrement rappelés aux patients : index de masse corporelle moins de 25 kg/m², HbA1c < 6,5 %, LDL-Cholestérol moins de 1 g/L, pression artérielle systolique moins de 140 mmHg (130 mmHg si diabète ou insuffisance rénale). Cette éducation thérapeutique continue au cours de la réadaptation, impliquant les différents membres de l’équipe, impose l’interdisciplinarité avec partage des connaissances et des compétences dans le domaine. Elle pourra être formalisée de différentes façons : entretiens personnalisés, réunions thématiques (tabac, alimentation, activité physique, observance médicamenteuse), avec participation éventuelle de l’entourage familial du malade. Elle donnera lieu à l’élaboration avec le patient d’un document de synthèse reprenant les objectifs quantifiés et les moyens personnalisés à mettre en œuvre. Ce document peut constituer la base d’un carnet de suivi du patient intégrant les principaux paramètres cliniques et biologiques contrôlés au long cours. Si nécessaire, des aménagements du lieu de vie et/ou du poste de travail seront proposés (intervention des ergothérapeutes).

La formation à l’autosurveillance est particulièrement importante : vérification de la distance de marche, sensibilisation aux premiers signes d’une décompensation hémodynamique périphérique, dépistage précoce des manifestations cardiaques (angor, dyspnée, fatigue, malaise…), respect des préconisations concernant les contrôles biologiques et les bilans angiologiques. La prévention des lésions plantaires est particulièrement importante. Elle passe par le dépistage des anomalies orthopédiques et neuropathiques, leur orthètisation éventuelle, l’application des règles strictes d’hygiène du pied et de chaussage, des soins podologiques réguliers et bien sur une autosurveillance sans faille. À l’issue de la réadaptation, la communication de ces différentes informations aux intervenants médicaux qui vont prendre le relais (médecin généraliste, angiologue, cardiologue, chirurgien vasculaire, diabétologue, tabacologue.) est essentielle avec, en particulier la nécessité de prévoir les différents rendez-vous pour des patients souvent peu compliants.

2.4. Indications

La réadaptation fait partie des traitements de première intention au cours de l’AMI. Cependant compte tenu de sa prévalence élevée – elle touche un cinquième des patients âgés de plus de 65 ans [35] – il n’est bien sur pas possible de proposer un programme de réadaptation à l’ensemble des patients, qu’ils soient symptomatiques ou non. Les recommandations de la Haute Autorité de santé sont donc de réséver la réadaptation en structure spécialisée aux « patients les plus sévères » : « patients symptomatiques, facteurs de risque cardiovasculaire non contrôlés, atteinte coronarienne avérée et risque de désinsertion » [61]. Pour les patients ne pouvant pas bénéficier d’un programme de réadaptation, des programmes d’interventions (en particulier de type coaching) devraient être proposées, visant à une modification peréenne de l’hygiène de vie et comportant en particulier une activité de marché au moins trois fois par semaine [91].

La réadaptation sera donc particulièrement indiquée lorsque les incidences fonctionnelles – notamment limitation de la distance de marche – sont importantes, que les facteurs de risque (en particulier l’intoxication tabagique) sont non contrôlés et que la compliance prévisible est correcte [123]. En effet les troubles graves de la personnalité sont un obstacle pour l’adhésion à cette réadaptation [75]. Le patient « type » relevant d’une réadaptation sera donc celui qui présentera un tableau de claudication artérielle chronique avec des facteurs de risque non contrôlés, des limitations fonctionnelles ayant des incidences sur sa vie sociale et professionnelle et une dégradation de sa qualité de vie [88]. Les résultats devront être analysés sur des différents aspects (en particulier performances aux tests de marche) et, en l’absence d’efficacité, confrontés aux données angiologiques pour réorienter les indications de revascularisation. Un programme de recondi- tionnement est ainsi un élément contributif de décision thérapeutique en cas de lésion fémoro-poplitée, en représentant le traitement de première intention avant revascularisation é ventuelle [89].

De plus en plus souvent, il peut s’agir d’un patient poly vasculaire pris en charge pour une atteinte athéromateuse à présentation symptomatique coronarienne [71] ou cérébrale prédominante [6]. Le dépistage systématique des lésions d’AMI, qui pêjorent le pronostic, est justifié chez ces patients car elles imposent un renforcement des mesures visant au contrôle optimal des facteurs de risque et une adaptation des modalités d’exercices [71].

Plus les lésions artérielles seront proximales, menaçantes, mal supplées plus elles relèveront d’une revascularisation, la
réadaptation pouvant être associée pour faciliter la récupération fonctionnelle et participer à la prévention secondaire dans le cadre d’une prise en charge globale [87]. C’est encore plus le cas pour les ischémies de membre pour lesquelles la réadaptation ne représente qu’un appui vis-à-vis de la revascularisation chaque fois que celle-ci est possible dans le but de la conservation du membre [26,86], compte tenu des bons résultats obtenus en particulier par le développement des traitements endovasculaires chez des patients portant porteurs de nombreuses co-morbidités [39]. Les progrès à venir dans ces techniques endovasculaire de traitement de la plaque d’athérome amèneront probablement dans les prochaines années à répréciser la place de la réadaptation au cours de l’AMI.

2.5. Conclusion

Bien que faisant partie de recommandations de niveau A [61,88,103,104], la réadaptation est toujours sous utilisée dans cette indication [44,132]. Pourtant elle améliore la durée et la qualité de vie du patient atteint d’AMI. Elle a en effet des objectifs plus ambitieux que la simple augmentation de la distance de marche : modifier le mode de vie, améliorer le niveau d’activités, faire reculer la morbi-mortalité. Les modalités de sa mise en œuvre, basées sur une approche globale associant reconditionnement à l’effort et éducation thérapeutique, sont de mieux en mieux établies. Elles reposent sur la mise à disposition d’une équipe pluridisciplinaire et d’un plateau technique spécialisé. La principale limite au développement de cette réadaptation reste l’insuffisance en nombre de telles structures.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References

[27] Corpeleijn E, Feskens EJ, Jansen EH, Mensink M, Saris WH, de Bruin TW, et al. Improvements in glucose tolerance and insulin sensitivity after
lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study. Diabetologia 2006;49:2392–401.


Smolender KG, Hoeks SE, Pedersen SS, van Domburg RT, de Liefde FF, Poldermans D. Lower-leg symptoms in peripheral arterial disease are associated with anxiety, depression, and anhedonia. Vasc Med 2009;14:297–304.


