might generalize VV measurement after stroke, which requires analyzing VV clinimetric properties.

Objectives.— To analyze the reproducibility of the VV, and to determine the minimum number of trials required to reach a robust final result, comparatively in stroke patients and control subjects.

Materials and methods.— Twenty patients with a first and unique hemispheric stroke (61.9 ± 12 years; 10 left-10 right-sided; 2.6 ± 3 months since stroke), matched to 20 control subjects (54.4 ± 6 years) were recruited from a neuro-rehabilitation unit.

The VV was assessed in a darkened room, subjects being seated, with head and trunk maintained upright. Subjects verbally indicated how to reset a luminous line presented on a computer screen to their subjective visual vertical. VV was measured twice, 5 days apart, with 10 trials performed each time. An average (orientation) and a standard deviation (uncertainty) were calculated. The minimum number of trials was the lowest number of consecutive trials leading to a final result similar (not significantly different) to that obtained with 10 trials, both for orientation and uncertainty. Non-parametric statistics were used for analyses.

Results.— The mean VV orientations were −3.7 ± 0.8° vs. −0.1 ± 0.8° (P < 0.01), and the mean VV uncertainty were 1.4 ± 0.1° vs. 0.8 ± 0.1° (P < 0.01), in stroke patients and control subjects, respectively. The test-retest reliability was high in patients for the orientation (r = 0.79; P = 0.001); acceptable for the uncertainty (r = 0.64; P = 0.002), and modest in control subjects due to very small variations in data (r = 0.45; P = 0.06). The minimum number of trials required to reach a stable and robust final result was 6 in controls as in stroke patients, both for VV orientation and uncertainty.

Conclusion.— VV orientation and uncertainty are reliable clinical criteria for assessing the sense of verticality in stroke patients, provided results are averaged on at least six trials.

http://dx.doi.org/10.1016/j.rehab.2012.07.264

CO25-003-e

Determination of force platform parameters during sit to stand movement in elderly: A preliminary study

F. Chorin a,*, C. Cornu, B. Beaume, A. Rahmani
Laboratoire Motricité, interactions, performance (EA4334) Le Mans-Nantes, 25 bis, boulevard Guy-Mollet, BP 72206, 44322 Nantes cedex 3, France
*Corresponding author.
E-mail address: frderic.chorin@univ-lemans.fr.

Keywords: Ageing; Force platform
Communication of Société de biomécanique.

http://dx.doi.org/10.1016/j.rehab.2012.07.265

CO25-004-e

Effect on postural control of spastic equinovarus foot treatment with botulinum toxin in stroke patients: Randomized, controlled, multicenter trial

L. Bensoussan a,*, G. Lottio a, J.-M. Viton a, F. Pellis a, J. Pelissier b, P. Calmeols a, V. Gautheron a, A. Delarue a
CHU Timone, 264, rue Saint-Pierre, 13005 Marseille, France
CHU Caremeau, Nîmes, France
CHU Bellevue, Saint-Étienne, France
*Corresponding author.
E-mail address: laurent.bensoussan@ap-hm.fr.

Keywords: Botulinum toxin; Spasticity; Postural control; Dual task
Objective.— To study the effects on postural control of the treatment with botulinum toxin in lower limb muscles in stroke patients.

Method.— Multicenter, randomized, active treatment versus placebo, double-blind study. Inclusion criteria: Hemiplegia over a year after a stroke with spasticity of leg muscles and equinovarus. Clinical evaluation and instrumental at 4 to 6 weeks after injection on clinical examination and evaluation of postural control. Assessment on an AMTI force plate of the center of pressure sway area for 30 seconds in three conditions: eyes open, eyes open in a dual task condition, eyes closed. The dual task consisted of a postural control task combined with an arithmetic task.

Results.— Forty patients were enrolled and randomized into two groups, one treated with botulinum toxin (n = 19) and the other with placebo (n = 21). The sway area before treatment was not significantly different between the two groups. The sway area of the center of pressure eyes open increased in placebo group (+2.48 cm²; sd 11.11) and decreased in the treated group (−1.74, SD 8.30) after injection but the difference was not significant (P = 0.735). The main effect was found in dual task with a significant decrease (P = 0.005) of the sway area in the treated group (−3.11; sd 6.92) compared with the placebo group (+0.27, sd 3.57).

Discussion.— Treatment of spasticity by botulinum toxin injection in the lower limb muscles in hemiplegic stroke patient changes postural control in this study with a significant decrease of the sway area in the treated group compared with the placebo group. The assessment of postural control in dual task seems to be an interesting test and sensitive to these effects.

http://dx.doi.org/10.1016/j.rehab.2012.07.266