CO27-008-f

Étude de l’effet pop-out chez le sujet héminégligent

C. Terracol,*, C. Montaut, E. Castel-Lacanal, X. De Boiszezon, C. Jouffrais, P. Marque

*Service de MPR, CHU Toulouse Rangueil, 1, avenue Jean-Poulhès, 31059 Toulouse, France

CO27-001-e

Rehabilitation for acquired visual field deficit: Review and prospects

S. Jacquin-Courtois, M.C. Pouget, C. Tilikete, M. Husain

*Service de rééducation neurologique, hôpital Henry-Gambert, hospices civils de Lyon, 20, route de Vourles, 69230 Saint-Genis-Laval, France

CO27-002-e

Can brain stimulation improve prognosis of post-stroke neglect?

Institut régional de médecine physique et de réadaptation, rue du Pr-Montaut, 54690 Lay Saint Christophe, France

*Corresponding author.

E-mail address: matthieu.kandel@sante-lorraine.fr.

References

http://dx.doi.org/10.1016/j.rehab.2012.07.497

Keywords: Visual Field; Hemianopia; Rehabilitation

Visual field deficit (VFD) is one of the most commonly observed symptoms following brain injury. Persistent VFD and defective exploratory oculomotor scanning patterns often cause severe impairment in daily activities, particularly as regards visual exploration and reading. Homonymous hemianopia is consequently a powerful negative predictor of patient outcome. In spite of these quantitative and qualitative factors, there currently exists no consensus on rehabilitative therapy and treatment. Different approaches have nevertheless been developed, all of them having one therapeutic principle in common; repeated practice of a specific visual task, with the hope/expectation that improved performance will extend to a wide range of ecologically useful visual functions. The four main available methods aim at replacing part of the intact visual field with part of the damaged visual field (optical therapy using prisms), at partially restoring the lost visual field region (restorative therapies), at stimulating detection capacities in the blind field (stimulation or blindsight) or at substituting for the lost region by reorganizing the control of visual information processing and eye movements (compensatory therapies). This review explores the key data relative to these different approaches in terms of behavioral or imagery results. It also aims at critically analyzing the advantages and limits of each one. The importance of strict assessment in terms of deficiencies or disabilities is underlined. Finally, upon consideration of these data taken as a whole, it is suggested that efficient treatment would probably have to associate general components and more specific elements, according to what may be done with regard to other aspects of cognitive rehabilitation. Some recent results have shown that rapid compensatory modifications can be induced on a ecological visual search task by a only training session combining pursuits and saccades, suggesting request of less intentional and more automatic compensatory mechanisms and thus a potential more efficient transfer to daily life activities.