Development and organization of the hypophysiotropic hypothalamus driving the pituitary-gonadal axis in the rhesus monkey

T.M. PLANT, M. EL MAJDOUBI, A.R. DURRANT, A. SAHU
Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.

INTRODUCTION

The drive to the pituitary-gonadal axis in higher primates is provided by a group of some 1,000 gonadotropin releasing hormone (GnRH) neurons that are diffusely distributed throughout the hypothalamus [34]. The perikarya of these neurons synthesize a prohormone, which is then processed to form the mature decapeptide. Many GnRH neurons project to the hypophysial portal circulation where they synchronously release a pulsatile discharge of the decapeptide, the principal releasing factor stimulating luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion. Each discharge of GnRH is robustly correlated with a volley in multiunit electrophysiological activity in the hypothalamus [42], and this hypophysiotropic system is often referred to as the GnRH pulse generator [12, 29]. The purpose of the present review is to describe, with particular emphasis on the rhesus monkey, the ontogeny and functional organization of the hypothalamic GnRH pulse generator.

FETAL ORGANIZATION OF THE GnRH PULSE GENERATOR

Interestingly, as first demonstrated for the rat [22], GnRH neurons in higher primates such as the rhesus monkey are born early in fetal life in the olfactory placode and enter the forebrain before migrating to the hypothalamus [32]. The essential components of the GnRH pulse generating neural network appear to be organized by mid-fetal development in higher primates, as reflected at this stage of development, by a pulsatile pattern of secretion of fetal pituitary gonadotropin.
led to the view that GnRH neurons possess properties that endow them with intrinsic pulsatile behavior. This line of thinking has been reinforced by the recent report that primary cultures of embryonic GnRH neurons from the monkey exhibit a pulsatile pattern of peptide release [38]. On the other hand, Bourguignon and his colleagues have demonstrated that rat retrochiasmatic explants, which contain GnRH axons severed from their cell bodies, continue to secrete their peptide in a pulsatile fashion [30]. This finding suggests that synchronized pulsatile release is imparted by non-GnRH elements in the mediobasal hypothalamus (MBH).

POSTNATAL ONTOGENY OF GnRH PULSE GENERATOR ACTIVITY

Higher primates exhibit a unique postnatal developmental pattern of GnRH pulse generator activity [23], and this is most graphically manifest in the open loop condition, which is shown for a representative primate in figure 1. By infancy, the GnRH pulse generator of the male monkey has acquired the capacity to operate at a circhroral frequency typical of that of the postpubertal animal. At approximately 6 months of age, however, the GnRH pulse generator is brought into check leading to the hypogonadotropic state that guarantees the quiescence of the prepubertal testis. The prepubertal restraint on pulsatile GnRH release is maintained for approximately 2 years and then abruptly lifted [36], with pulse frequency in the agonadal state accelerating explosively over a period of 30 to 40 days to terminate the prepubertal phase of development (figure 2).

In both male and female, the GnRH pulse generator is subjected to diurnal modulation during infancy, with increased activity of this neuroendocrine system being observed at
night. During prepubertal development, a similar diurnal modulation of the GnRH pulse generator is observed in the female [21] where the prepubertal brake on GnRH release is less marked than in the male. A through the lifting of the prepubertal restraint on the GnRH pulse generator is initially manifest at night in both sexes, nighttime augmentation of pulsatile GnRH release persists into adulthood only in the male.

NEUROBIOLOGY OF THE PREPUBERTAL RESTRAINT ON PULSATILE GnRH RELEASE

The finding that repetitive stimulation of the GnRH neuronal network of the prepubertal monkey with a glutamate receptor agonist results in the immediate activation of an adult-like pattern of pulsatile GnRH release that leads to precocious gonadal function [9, 27], suggests that the prepubertal restraint on pulsatile GnRH release is determined by developmental changes in an upstream input to the neurons responsible for the secretion of this peptide. Recent studies of the agonadal male monkey indicate that the loss of this restraining input to the GnRH pulse generator of the prepubertal hypothalamus is associated with an upregulation of the gene encoding the releasing factor [5]. That this pubertal change in gene expression has not been previously reported [13, 40] is probably due to the earlier use of gonadally intact models where amplified steroid feedback resulting from hypothalamic puberty may be anticipated to limit developmental changes in GnRH mRNA levels. This notion is supported by the findings that castration in adult male monkeys and estradiol treatment of ovariectomized monkeys elicits an increase and a decrease, respectively, in GnRH mRNA levels in the MBH [6 and El Majdoubi, Sahu and Plant, unpublished observations].

That the prepubertal restraint on pulsatile GnRH release and GnRH gene expression is imposed by a reversible inhibitory input is supported by ultrastructural studies indicating a decline in axosomatic input to GnRH neurons at the onset of puberty (figure 3). Because of the studies of Terasawa and her colleagues showing that hypothalamic γ-aminobutyric acid (GABA) release declines with the onset of puberty [16], and that interruption of GABA synthesis or action by local administration of antisense oligonucleotides for the mRNA for the GABA synthesizing enzyme, glutamic acid decarboxylase (GAD) or an antagonist to the GABA A receptor, respectively [16, 17], elicits GnRH release during prepubertal development, GABA has been considered as the most likely candidate for this inhibitory input. Recently, however, the pubertal upregulation of the GnRH gene and the reaugmentation of pulsatile GnRH release has been found to be associated with a decline, in the MBH, of the mRNA encoding neuropeptide Y (NPY) [5]. Since Pau et al. [19] have demonstrated that injection of this neuropeptide into the third cerebroventricle of the adult ovariectomized rhesus monkey inhibits GnRH release (figure 4), and since NPY neurons in the MBH are found in regions that also contain GnRH perikarya [39], it seems reasonable to propose that NPY must be considered, along with GABA, as a
potential component of the prepubertal brake on the GnRH pulse generator.

In addition to potential neuronal signals that might mediate the prepubertal brake to the GnRH neuron, the possibility that the hiatus in GnRH release at this stage of development also involves glial inputs has been proposed [13]. In contrast to the scant innervation of GnRH neurons, glial ensheathment of both GnRH perikarya and axons is substantial [20, 43; Durrant and Plant, unpublished observations]. Moreover, in the female rhesus monkey, the pubertal reaugmentation in pulsatile GnRH release is associated with an increased hypothalamic expression of the gene encoding transforming growth factor α (TGFα) [13]. Since this growth factor, which is produced by glial cells, has been shown to stimulate GnRH release in the rat [18], it has been proposed by Ojeda and his colleagues [13] that the pubertal increase in TGFα may be the trigger for the reaugmentation of pulsatile GnRH release at this stage of development. The recent finding that GnRH axons make numerous en passant « synaptoid » contacts with astrocytes in the monkey median eminence (Durrant and Plant, unpublished observations), however, raises the alternate possibility that the TGFα response at puberty is a result of the reactivation of the GnRH neuronal network.

In summary, it should be emphasized that the foregoing observations on the potential role of neurotransmitters and neuromodulators in triggering the reaugmentation of pubertal GnRH release at the end of the juvenile phase of development have yet to be placed into a unifying hypothesis to account for the onset of primate puberty.

PERIPHERAL SIGNALS COORDINATING DEVELOPMENTAL CHANGES IN GnRH PULSE GENERATOR ACTIVITY

It is reasonable to propose that activation of the neurobiological mechanisms that trigger the reawakening of the GnRH pulse generator is coordinated, at least in part, by peripheral signals that reflect somatic growth and other aspects of development. In this regard, the attainment of a particular proportion of body fat has long been argued by Frisch and her colleagues [8] to be requisite for the onset of human puberty. Interest in this notion has recently been rekindled because of the discovery of leptin, a protein derived from adipocytes, that provides the hypothalamus with a somatic signal that relays information on fat mass to the central neural control systems regulating feeding behavior. There is also no doubt that leptin is able to exert significant effects on the hypothalamic-pituitary-gonadal axis [1, 3]. Moreover, in man, mutations of the genes coding for leptin or the leptin receptor result in disorders of pubertal development [4, 35]. These observations, together with the tantalizing finding that circulating leptin concentrations rise in association with the onset of puberty in both normal boys and girls [10, 14], may be taken to argue that leptin is the trigger for the onset of puberty. The foregoing considerations may be countered by a comparative argument. Namely, the fundamental halli-
marks of the ontogeny of the GnRH pulse generator in monkey and man appear to be identical (figure 1) and unique to higher pri-
mates. The most parsimonious explanation for this similarity across species of higher pri-
mate is that the lifting of the prepubertal brake on the GnRH pulse generator in man and man-
key is cued by the same developmen-
tial signal. If this argument is accepted, then
the hypothesis that leptin is the trigger for pri-
mate puberty must be rejected because in the
male monkey, in contrast to man, a rise in cir-
culating leptin concentrations does not pre-
cede the pubertal reaugmentation of GnRH pulse generator activity, as reflected by initia-
tion of nocturnal testosterone secretion ([26]
figure 5). While the foregoing argument fails
to support the idea that leptin and adipose tis-
se comprise the pubertal clock, they do not
detract from the notion derived from studies
of rat that, in the context of developmental
changes in GnRH pulse generator activity,
leptin serves as a permissive circulating signal
of nutritional status. Moreover, undernutri-
tion in the adult monkey leads to impaired
GnRH pulse generator activity [2] and there-
fore to a pseudoprepubertal condition. If
leptin is established to be the permissive
metabolic signal that allows optimal GnRH pulse generator activity in nonfasted adults [7], it would be reasonable to predict that this
role of leptin would also be operational
during other stages of development, such as
puberty, when GnRH pulse generator activity
is being expressed. A corollary, low levels of
circulating leptin at this critical stage of deve-
lopment would mask the manifestation of the
pubertal reawakening of the GnRH pulse
generator, triggered by the true pubertal
clock. What remains to be resolved is the
reason for the difference in the peripubertal
pattern in circulating leptin in monkeys and
boys. Perhaps, this is related to differences in
the proportional increase of fat to overall
body weight during the pubertal growth spurt
that is seen in both species [37].

THE GnRH PULSE GENERATOR
IN THE ADULT

The GnRH pulse generator of the adult
comprises an integral component of the feed-
back loops that regulate ovarian cyclicity
and spermatogenesis, and forms the interface
between the central nervous system and the
pituitary-gonadal axis. In the latter role, the
GnRH pulse generator relays to the repro-
ductive axis the impact of stress, the conse-
quences of metabolic imbalance arising from
factors related to nutrition and exercise, and
the influence of exteroceptive cues such as
photoperiod. The neurobiological inputs that
mediate the many factors that determine
GnRH pulse generator activity in the adult
are poorly understood but perhaps may be
anticipated to involve novel mechanisms. This
is because classical synaptic inputs to GnRH
perikarya are scant [20, 34] and it is difficult
to envision how such a limited signalling
mode, alone, could effect such diverse control
of the reproductive axis.

ACKNOWLEDGEMENT: The work from this laboratory was
supported by the NIH (HD 13254 and HD 08610).

REFERENCES

[1] Barash IA, Cheung CC, Weigle DS et al. Leptin is a metabolic signal to the reproductive system. En-
docrinology 1996 ; 137 : 3144-3147.
[2] Cameron J.L. Regulation of reproductive hormone
secretion in primates by short term changes in nu-
DS, Clifton DK, Steiner RA. Leptin is a metabo-
lic gate for the onset of puberty in the female rat.
in the human leptin receptor gene causes obesity
and pituitary dysfunction. Nature 1998 ; 392 : 398-
401.

Finn PD, Cunningham MJ, Paul KYF, Spies HG, Clifton DK, Steiner RA. Leptin disinhibits LH secretion in fasted monkeys and this effect may be mediated by proopiomelanocortin and neuropeptide Y neurons in the hypothalamus. 80th Annual Meeting of the Endocrine Society, New Orleans, LA, June 1998; A abstract R0 R-6.

Mitsushima D, Hei DL, Terasawa E. γ-Aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci, USA, 1994; 91: 396-399.

Ojeda SR, Urbanski HF, Costa ME, Hill DF, Montgomery-Siebert M. Involvement of transforming growth factor α in the release of luteinizing hormone-releasing hormone from the developing female hypothalamus. Proc Natl Acad Sci, USA, 1990; 87: 9639-9643.

Plant TM. A striking sex difference in the gonadotropin response to gonadectomy during infancy and pubertal development in the rhesus monkey (Macaca mulatta). Endocrinology 1986; 119: 539-545.

Plant TM, Durrant AR. Circulating leptin does not appear to provide a signal for triggering the initiation of puberty in the male rhesus monkey (Maca-ca mulatta). Endocrinology 1997; 138: 4550-4558.

[38] Terasawa E, Keen KL, Schanhofe WK, Claude P. Synchronization of intracellular Ca2+ oscillations in LHRH neurons derived from embryonic olfactory placode of the rhesus monkey. 27th Annual Meeting of the Society for Neuroscience, New Orleans, LA, October 1997; Abstract 19.10.

