Percutaneous brachial venous access: Tips and tricks

P.Y. Marcya,*, E. Giordanab, N. Amorettib, M. El Hajjamc, A. Cissokod, A. Lacoute

a Medical imaging Department, François Baclesse center, 3, avenue du Général-Harris, 14076 Caen cedex 05, France
b Interventional Radiology Department, centre hospitalier universitaire, 151, route Saint-Antoine-de-Ginestière, 06200 Nice, France
c Radiology Department, hôpital Ambroise PARE (AP—HP), 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France
d Radiodiagnostics Department, centre hospitalier Clavary, chemin de Clavary, 06135 Grasse, France
e Medical Imaging Centre, 47, boulevard du Pont-Rouge, 15000 Aurillac, France

KEYWORDS
Venous catheter; Implantable catheter port; Percutaneous venous puncture; Venous approach; Seldinger technique

The insertion of implantable catheter ports (IP) is constantly increasing in France, with more than 150,000 inserted each year. Originally described by Starkhammar for insertion via the brachial veins \cite{1}, insertion of an IP must meet the following three criteria:

- the subcutaneous port must be inserted in a stable region of the body—very often the subclavian region—little exposed to trauma and risk of infection, with easy access for the nurse;
- the tunnel for the path of the extra-venous catheter between the port and point of venous access should be short and straight;
- the route for the catheter from its entry into the vein to the atrioventricular junction must be harmonious. This article describes the brachial technique, often overlooked, together with its indications.

Technique

A venous Doppler ultrasound examination eliminates asymptomatic subclavian vein or superior vena cava stenosis or occlusion \cite{2}. It also shows the type of anatomical venous distribution to the arm. Examination of the M-shaped venous system in the bend of the elbow looks for dominance of the median cubital vein and then of the basilic vein in the arm. In the case of small calibre veins, the middle third/upper third of the arm is punctured, preferably at a valve dilatation (Figs. 1 and 2). If two attempts at basilic access have failed,
the third attempt should be on the brachial vein, which frequently has anatomical variants: fusion with the basilic vein in the lower third of the arm (17%), absence of duplication (17%), retro-arterial position (8%) [3,4]. The cephalic vein in the arm remains superficial but rolls considerably and is fragile; thrombosis occurs here four times more often than in the basilic vein [4]. For these reasons, it is used as a last resort. In the operating theatre, the patient’s checklist is completed [5]. The skin is marked with a felt-tip at the brachial middle third of the basilic vein before standard four-step betadine asepsis of the operative field. The 2% lidocaine local anaesthetic is buffered with a solution of molar bicarbonates at 3.2% (1/3–2/3) to limit the pain of the injection. It is given as follows: 5 mL at the future skin incision and 15 mL directed inwards and downwards, having curved the 25 G anaesthesia needle to 90° to produce gentle hydrodissection of the future site of the brachial port (Fig. 1a). The 20 to 25 mm skin incision is vertical along the axis of the arm, 2 mm outside the basilic axis. The venepuncture needle (Fig. 1b) is introduced here providing a straight path for the extravenous part of the subcutaneous catheter, thus reducing the risk of fissuring through bending/unbending. For the venepuncture, a modified 30-degree oblique Seldinger technique is used, with real-time ultrasound guidance (Fig. 2). Once the anterior wall of the vein has been breached (blood flashback), controlling venous return allows the guide to be introduced, then the peelable introducer on the guide (Fig. 1c). The axillary tourniquet is released before withdrawing the needle on the guide, to reduce the risk of haematoma. In order to prevent kinking of the peelable catheter during its introduction, it is advanced (at an angle relative to the vein <30°) in the axis of the target vein, by rotating it. The appearance of otalgia in the patient suggests that the catheterisation has taken a wrong jugular route. Partial withdrawal of the guide, deep inspiration, or contra-lateral rotation of the neck and the use of a hydrophilic guide overcome venous loops or curves, especially in atheromatous and obese patients. On the left side accidental catheterisation of the azygos arch is frequent because the end of the innominate vein faces the opening of the azygos arch. A compress temporarily left in the site of the future port controls local haemostasis (Fig. 1d). The thickness of the skin over the port should be between 10 and 15 mm to limit the risk of skin exposure. The length of the 5 to 7 F gauge catheter is 30 to 35 cm on the right, and 35 to 40 cm on the left. Left anterior oblique

![Figure 1](image-url)
thoracic incidence of 20° peroperatively shows the superior vena cava end of the catheter best (Fig. 2). Brachial abduc-
tion lowers the catheter by 10 to 15 mm so it is advisable to
check the length of adjustment of the catheter by X-rays,
with the arm in abduction then in adduction, before skin
closure [6]. Since the reserve of elasticity of the silicone or
polyurethane catheter is greater on the left (greater length),
the distal end of the catheter is positioned 10 mm lower
than on the right. The wound is sutured in two planes, deep
and sub-cuticular, using absorbable sutures. The port is not
sutured, since collagen fibrosis sets in rapidly. The system
is tested by rinsing with physiological saline. A transparent
dressing is applied allowing the nurse to inspect the wound
and skin. The patient may shower three days later.

Discussion

In the consultation prior to the insertion of an IP the patient
should be examined and informed about the procedure, the
body mass index (BMI) calculated, pendulous breasts [7] and
the possibility of a supine position investigated, and the side
for insertion of the IP determined. As regards the side
for insertion, the asymptomatic side is the side opposite
a breast tumour, axillary lymph node dissection, radiother-
dermatitis, local tumour permeation (breast cancer), a catheter
(or previous catheter) or pacemaker, and finally, the dom-
inant hand of the subject. Specific indications for the
brachial route include the timid, anxious patient who wants
the venous access to be “away from her body”, discretion
(professional reasons), obesity (superficial basilic vein,
orthostatic insertion), ENT neoplasia (thoracic port con-
traindicated, cervical irradiation, tracheotomy), respiratory
insufficiency (orthostatism) and breast cancer (procedure
away from the thoraco-mammary area, discretion, aes-
thetic neckline). Indications for venographic guidance are
obese arms (ultrasound more difficult), previous homo-
lateral catheterisation and venous spasm (young anxious
patient). As far as the size of the port is concerned, we
prefer to use a medium sized device (20 × 10 mm in height)
that is more stable than the brachial mini-port and has a
larger puncture septum. It is nevertheless useful to consider
a mini chamber in paediatrics and in emaciated patients with
a high risk of skin dehiscence. The skin incision is vertical
because the mechanical tension of the edges is less than with
a horizontal incision (underlying biceps muscle), and wound
healing occurs more quickly. Since mechanical stress on the
port is more frequent in the arm (an anatomically mobile
area) than in the thorax, we advise against its implantation
in agitated and confused patients, for any infusion exceeding
twelve hours, and in haemodialysis patients. Finally, review
of the literature concerning retrospective series comparing
a brachial IP with a thoracic IP [8,9] diverges on the
more thrombogenic character of brachial access. The only
randomised prospective comparative study found a com-
parable rate of venous thrombosis but a greater number of
mechanical (suture dehiscence, fissuring, maladjustment)
and septic complications [10]. This is the reason for our
opinion that brachial access should only be used by trained
operators (those inserting PICC lines) and for the above
indications.

Disclosure of interest

The authors declare that they have no conflicts of interest
concerning this article.

References

venous catheter. A multicenter study. Med Oncol Tumor Phar-
[2] Patel MC, Berman LH, Moss HA, McPherson SJ. Subclavian and
internal jugular veins at Doppler US: abnormal cardiac pulsatil-
ity and respiratory phasicity as a predictor of complete central
JJ, et al. Prevalence of variant brachial-basilic vein anatomy and
indications for vascular access planning. J Vasc Surg
Y, et al. Venous thrombosis associated with the placement of
peripherally inserted central catheters. J Vasc Interv Radiol
in the interventional radiology suite. Cardiovasc Intervent Radiol
[6] Forauer AR, Alonzo M. Change in peripherally inserted central
catheter tip position with abduction and adduction of the upper
Indwelling catheter retraction because of pendulous breast.
venous thrombosis associated with chest versus arm central
venous subcutaneous port catheters: a 5-year single-institution
Percutaneous brachial venous access: Tips and tricks
