Discussion – Raised arterial stiffness was detected at baseline in GPA patients. Mean endothelial function improved at 6 months after rituximab in the three patients with available follow-up data.

Conclusion – Our preliminary data demonstrate a possible association between rituximab and improved endothelial function in GPA. A full report is awaited.

References

http://dx.doi.org/10.1016/j.jpm.2013.02.207
Results.—Thyroid disease was found in 44 of 181 patients with AAV (24.3%) and 15 of 202 controls (7.4%) \(P = 0.0001\), chi-squared). 35/44 (79.5%) had treated hypothyroidism, 5/44 (11.4%) were treated for hyperthyroidism with either propylthiouracil or radio-iodine and 4/44 (9.1%) had transiently abnormal thyroid function tests thought to be thyroiditis. In the control group 8/15 (53.3%) had treated hyperthyroidism, 2/15 (13.3%) were treated for hyperthyroidism, 2/15 had multinodular goitre and 1/15 had thyroid malignancy. More female patients had a diagnosis of thyroid disease in both AAV (72.7%) and control groups (66.7%). AAV patients with thyroid disease more commonly had anti myeloperoxidase (MPO) antibodies compared to the group without thyroid disease (56.8% vs. 40.1%, \(P = 0.0527\), chi-squared). Thyroid peroxidase (TPO) antibodies were positive in 5/19 (26.3%) of AAV patients and 0/3 control patients.

Discussion.—There is an association between thyroid disease and AAV with greater incidence of thyroid disease in those with anti-MPO antibodies. This could be due to cross-reactivity between anti-MPO and anti-TPO antibodies.

Conclusion.—In view of this association we suggest that patients diagnosed with AAV should be tested for concomitant thyroid disease.

Further reading

Lionaki S, Hogan SL, Falk RJ, Joy MS, et al. Association between thyroid disease and AAV—systemic vasculitis involving abdominal structures usually has a poor prognosis. Gallbladder (GB) vasculitis (GV) has been reported in systemic vasculitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.

Methods.—Pathology databases from our institution and a PubMed search were used to identify pts with GV. Clinical, laboratory, histologic features, therapies and outcomes were recorded. Patients were divided into IGV and SGV. IGV required isolated extent confirmation after a follow-up period of at least 6 months.

Results.—Fifty-seven pts with GB were included (29F/28 M), 6 from our institution. 44% presented with gall stone associated cholecystitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.

Introduction.—Systemic vasculitis involving abdominal structures usually has a poor prognosis. Gallbladder (GB) vasculitis (GV) has been reported in systemic vasculitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.

Methods.—Pathology databases from our institution and a PubMed search were used to identify pts with GV. Clinical, laboratory, histologic features, therapies and outcomes were recorded. Patients were divided into IGV and SGV. IGV required isolated extent confirmation after a follow-up period of at least 6 months.

Results.—Fifty-seven pts with GB were included (29F/28 M), 6 from our institution. 44% presented with gall stone associated cholecystitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.

Introduction.—Systemic vasculitis involving abdominal structures usually has a poor prognosis. Gallbladder (GB) vasculitis (GV) has been reported in systemic vasculitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.

Methods.—Pathology databases from our institution and a PubMed search were used to identify pts with GV. Clinical, laboratory, histologic features, therapies and outcomes were recorded. Patients were divided into IGV and SGV. IGV required isolated extent confirmation after a follow-up period of at least 6 months.

Results.—Fifty-seven pts with GB were included (29F/28 M), 6 from our institution. 44% presented with gall stone associated cholecystitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.

Introduction.—Systemic vasculitis involving abdominal structures usually has a poor prognosis. Gallbladder (GB) vasculitis (GV) has been reported in systemic vasculitis (SGV) and as focal single-organ/isolated GV (IGV). We analyzed clinical and histologic characteristics of patients (pts) with GV in order to identify features that differentiate IGV from SBV.