CO16-003-e

Total knee arthroplasty, unicompartmental knee arthroplasty: Indications

C. Chevillotte, G. Deschamps
Centre orthopédique médicochirurgical de Dracy-le-Fort, 2, rue du Presseoir, 71640 Dracy-le-Fort, France
*Corresponding author.
E-mail address: cchevillotte@yahoo.com

Keywords: Total knee arthroplasty; Unicompartmental knee arthroplasty

Unknown abstract.
http://dx.doi.org/10.1016/j.rehab.2013.07.943

CO16-004-e

Clinical physical and rehabilitation medicine care pathways: “patients after total hip or total knee arthroplasty”

P. Ribinik, M. Genty, F. Rannou, E. Coudeyre, F. Le Moine, G. De Korvin, A. Yelnik, P. Calmels
Service de MPR, centre hospitalier de Gonesse, 25, rue Bernard-Février, BP 30007, 95503 Gonesse cedex, France
Service de Médecine physique et de réadaptation, hôpitaux Cochin AP-HP, université Paris 7, 5 75627 Paris cedex 14, France
Service de médecine physique et de réadaptation, hôpital Nord, CHU de Clermont-Ferrand, université d’Auvergne, route de Chateaugay, BP 300056, 63118 Cébazat, France
Centre Hélio-Marin, UGECAM Paca et Corse, 62200 Vallauris, France
Centre hospitalier privé Saint-Grégoire, 6, boulevard de la Boutière, CS 56816, 35768 Saint-Grégoire cedex, France
Service de MPR, groupe hospitalier St-Louis Lariboisière F.-Widal, AP-HP, UMR 8194, université Paris Diderot, 200, rue du Faubourg-St Denis, 75010 Paris, France
Service de MPR, hôpital Bellevue, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France
*Corresponding author.
E-mail address: patricia.ribinik@wanadoo.fr

Keywords: Clinical care pathway; Physical and rehabilitation medicine; Hip; Knee; Arthroplasty

Objective: Describe a clinical PRM care pathway for patients having total hip or knee arthroplasty taking into account patients’ needs, PRM care objectives, human and material resources to be implemented, chronology as well as expected outcomes.

Material and method: – Describe on a consensus way, validated by the Sofnir scientific council taking account on littérature this PRM care pathway concerns patients after primary or revision total hip (THA) or knee arthroplasty (TKA) and are classified:
– into three care sequences: stage 0 pre-operative care; stage 1 until cutaneous and muscular healing; Rehabilitation to daily life activities; stage 2: effort training program;
– and two clinical categories, each one being treated with the same six parameters according to the International Classification of Functioning, Disability and Health (WHO), while taking into account personal and environmental factors that could influence the needs of these patients. (Category 1: only one impairment and primary THA or TKA, Category 2: several impairments and primary THA or TKA or revision THA or TKA.

Care organization modalities (ambulatory physical therapy sessions, inpatient or outpatient PRM care facility) take into account patient’s status, sanitary and social environment.

Discussion and conclusion: – The objective of these clinical PRM care pathways designed by Sofnir and Fedner is to provide arguments for discussing the future pricing of the activity in follow-up rehabilitation health care facilities, by proposing other approaches, complementary to the activity-based pricing. These documents are voluntarily short in order to be useful, concise and practical. They do not describe PRM care program which list in PRM activities after THA and TKA.

Other pathways are published.

Further readings

http://dx.doi.org/10.1016/j.rehab.2013.07.945

CO16-005-e

Foncional coxometry. Comparative study between Healthy and hip arthrosis subjects studied by EOS system

S. Bendaya
CHU Rothschild, Paris 12, 5, rue Santerre, 75012 Paris, France
E-mail address: samy.bendaya@rth.aphp.fr

Keywords: EOS; Coxarthrosis; Pelvic and acetabular parameters; Standing

This study describes a quantitative analysis with EOS 2D/3D system of 30 asymptomatic subjects (HG) and 30 coxarthrosis subjects (CG).

Method: – Radiographs Biplanes EOS of standing patients were processed to perform a 3D reconstruction of the pelvis and the hip [1]. We extracted quantitative parameters and analysed the 60 members of the HG, and the 60 members of the CG. To perform this study we used the student’s statistical method, p-value < 0.05.

Results: – The incidence [2] angle is similar in both populations. T test was positive for he following parameters of CG (sacral slope, HKS, Idelberg and Franck, femoral mechanical angles, and femoral head eccentricity). We observe a greater level of right and left asymmetry in coxarthrosis subjects for femoral head and the HKS angle.

Discussion: – The arised of a degenerative osteoarthritis of hip induces a an increasing of SS that has been until now described only on qualitative profile plan [3,4]. The increasing of SS induces waterfall of postural events that influences femoral and acetabular orientation.

Conclusion: – We observe a larger sacral slope in CG witness excessive strain of the lumboSacral junction in osteoarthritics (Very common combination between hip and lumbar spine). Some parameters of pelvic and acetabular vary between the HG and CG. Further studies standing and sitting position are needed to confirm our results.

*Hôpital Rothschild AP-HP, 5, rue Santerre paris 12
**LBM arts et Métiers Parisitech, bd de l’Hôpital Paris 13
***Hôpital Pitié salpêtrière, Service d’orthopédie, bd de l’Hôpital paris13

References

http://dx.doi.org/10.1016/j.rehab.2013.07.946