Discussion.– These findings suggest that initial tibial nerve SEP can be a useful
bio-marker for predicting initial hemiplegia. Patients with normal SEP
response were significantly different according to the SEP findings (ANOVA,
P < .001). Post-hoc analysis showed significant difference between normal and absent response in
BBS (P < .001) and FAC (P < .001), and between abnormal and absent response in
BBS (P = .012) and FAC (P = .019). Functional outcomes of normal response
group were better than abnormal group, but there was no statistical significance.
Discussion.– These findings suggest that initial tibial nerve SEP can be a useful
bio-marker for predicting functional outcomes in hemiplegic patients.

http://dx.doi.org/10.1016/j.rehab.2014.03.058

CO69-003-e
Therapeutic effects of positioning in patients with CNS lesion – RCT
H. Pickenbrock a,∗, A. Zapf b, D. Dresser c
a Medical School Hannover , Hannover , Germany
b University Medical Center Göttingen , Department Medical Statistics,
Germany
c Medical School Hannover , Clinic for Neurology , Department of Movement
Disorders , Germany
*Corresponding author.

Keywords: Positioning; Acquired brain lesion; Rehabilitation; pROM; RCT
Introduction.– Positioning severely impaired patients is used as a matter of
course, but there is little evidence regarding the effectiveness of positioning. This
study compares the effects of conventional positioning (CON) with Positioning
in Neutral (PIN) on passive range of motion (pROM) and on comfort.
Material and methods.– In this prospective, multicenter, assessor blinded RCT
we enrolled 218 non-ambulatory patients, randomly assigned to PIN (n = 105) or
CON (n = 113). Patients were lying in the allocated position for two hours. For
primary analysis an analysis of covariance (ANCOVA) with change of pROM
of the hips as dependent variable, type of positioning (PIN/CON) as independent
variable and baseline measurement as covariate was used.
Results.– The change of pROM of flexion of the hips was significantly higher in
the PIN group than in the CON group (P < 0.001, mean change PIN:CON: 7.35°; 95% CI = [4.10;10.61]) whereas there were no changes in the CON group.
The effects on shoulder pROMs are similar (P < 0.001). PIN is perceived as
substantially more comfortable than CON (P < 0.001).
Discussion.– Decreased pROM is associated with pain, limited function and
delay of rehabilitation. Only PIN showed therapeutic effects on pROM while
being perceived as more comfortable.

http://dx.doi.org/10.1016/j.rehab.2014.03.059

CO69-004-e
Post-stroke rehabilitation mobile team: Lessons to be pulled of an experience from
Lille
D. Briere a,∗, V. Hamon , J. Netter , B. Pollez , C. Pruvo
a GCS GHICL, service MPBF, filière AVC Lille Flandre Lys, Lomme, France
*Corresponding author.

Keywords: Hospital-home link; Mobile team; Support; Relay
Introduction.– Since “Filière AVC Lille Flandre Lys”’ creation in January 2008,
we notice a discontinuity between hospital and town at patient’s release,
compared with his care’s and life’s projects.
Observation.– The “ARS” made in April 2012, in “filière AVC”, a mission devel-
opment called “EM2R”, by occupational therapists, speech therapists,
neuropsychologists and social workers. This team works in support from acute
phase to patient’s life environment.
So we define new objectives: coordinate information, optimize experience’s
transfer, purpose and organize relay with all professionals and caregivers who
work at patient’s home for them to assure an optimal care’s continuity, inform and
form all daily life’s caregivers, improve the service provided in fight against dis-
ability in real life’s situation. Since 1 year of functioning, EM2R have supported
60 patients at home, which represent 66% of patients followed in rehabilitation
services.
Conclusion.– After more than 1 year, we realized mission’s assessments to high-
light determining factors of success and axes of improvement, to contribute to
optimize link between hospital and home.

http://dx.doi.org/10.1016/j.rehab.2014.03.060

CO69-005-e
Epidemiological data in length of stay in cerebrovascular accident (CVA) patients
I.A. Tzanos a, D. Psillaki b, V. Tragoulias , A. Patrelis , E. Stefas , N. Groumas
National Rehabilitation Centre, Athens, Ilion, Greece
*Corresponding author.

Introduction.– Our purpose was to study epidemiological data in length of stay
of CVA patients who were hospitalized in our clinic and correlate with problems
revealed during their hospitalization.
Methods.– Three hundred and eleven patients with CVA (197 males and 114
females), from 26 to 82 years old (mean age 54) – 163 with right hemiplegia and
148 with left hemiplegia – were recorded.
Results.– Patients have been referred from neurological and internal medicine
departments. The admission’s delay varied from two weeks to three months. The
mean time of hospitalization in these patients was correlated with the severity of
the CVA, complications, pre-existing pathological status and relatives’ support.
The rehabilitation mean time for patients without complications and with good
relative support without pre-existing pathological problems independently from
age and gender was 10 weeks. With complications it rises to 14–18 weeks.
With pre-existing pathological status, it depends on the severity of it. With no
relatives’ support, independently from all the other factors we have a delay from
two to nine months.
Discussion.– Generally, out of the international standards of length of stay
in a rehabilitation clinic one of the main reasons for delay of hospitalization time
seems to be the relatives’ environment.

http://dx.doi.org/10.1016/j.rehab.2014.03.061

CO69-006-e
Perinatal arterial ischemic stroke: Guidelines for diagnosis, management and
rehabilitation of newborn with a high risk of hemiplegia
C. Vuillerot a, M. Chevignard b, T. Debillon c, M. Kossorotoff a, M. Zerat a, B. Hasson d, C. Renaud d,
S. Chabrier e,∗

a Centre de Référence national AVC de l’enfant, service de rééducation
fonctionnelle pédiatrique, L’escale, hôtel Femme-Mère-Enfant, Bron, France
b Centre de Référence national AVC de l’enfant, service de rééducation des
pathologies neurologiques acquises de l’enfant, hôpitaux de St Maurice,
France
c Centre de Référence national AVC de l’enfant, service de néonatologie, CHU
de Grenoble, France
d Centre de Référence national AVC de l’enfant, service de neuropédiatrie,
hôpital Necker, AP–HP, France
e Centre de Référence national AVC de l’enfant, service de neurochirurgie
fonctionnelle pédiatrique, hôpital Necker, AP–HP, France
f Centre de Référence national AVC de l’enfant, service de radiopédriatrie,
centre hospitalier universitaire de Bicêtre, AP–HP, France
g Centre de Référence national AVC de l’enfant, CHU St-Etienne, France
h Centre de Référence national AVC de l’enfant, service de neuropédiatrie,
CHU St-Etienne, France
*Corresponding author.