Clinical and urodynamic evaluations of urinary disorders in multiple sclerosis

Évaluations cliniques et urodynamiques des troubles vésico-sphinctériens dans la sclérose en plaques

G. Amarenco a,b,* , M. de Sèze c , A. Ruffion d , S. Sheikh Ismael a,b

a Sorbonne universités, UPMC université Paris-6, GRC n° 01 GREEN (Group of Clinical Research in Neuro-Urology), 4, place Jussieu, 75252 Paris cedex 05, France
b Service de neuro-urologie, hôpital Tenon, AP–HP, 4, rue de la Chine, 75020 Paris, France
c Clinique Saint-Augustin, 114, avenue d’Ares, 33000 Bordeaux, France
d Service d’urologie, CNRS, Inra, institut de génomique fonctionnelle de Lyon, centre hospitalier Lyon Sud, hospices civils de Lyon, université de Lyon, 69229 Lyon cedex 02, France

Received 19 May 2014; accepted 19 May 2014

Abstract

Urinary dysfunction is a major clinical problem and a significant cause of disability in multiple sclerosis (MS) patients. Indeed, the bothersome symptom of urinary dysfunction may adversely affect social relationships and activities in MS patients. Since many causes of urinary dysfunction are described, a thorough evaluation including history, clinical examination and evaluation of quality of life is necessary. Generally, diagnosis of urinary disorders is complex with intricated pathophysiologic factors. In these cases, urodynamic investigations are necessary to better understand symptoms pathophysiology and choose the best treatment.

Keywords: Multiple sclerosis; Urinary dysfunction; Incontinence; Urodynamic

Résumé

Les troubles vésico-sphinctériens constituent un problème majeur au cours de la sclérose en plaques (SEP) et sont source d’handicap. En effet, la gêne induite par de tels symptômes peut affecter les relations sociales du patient et ses activités quotidiennes. En raison des très divers types et mécanismes des dysfonctionnements urinaires qui ont pu être décrites au cours de la SEP, une évaluation complète doit être effectuée incluant examen clinique et appréciation de la qualité de vie. La complexité des tableaux, l’intrication des mécanismes physiopathologiques justifient dans la majorité des cas la réalisation d’un bilan urodynamique pour mieux comprendre les mécanismes des troubles et déterminer au mieux la stratégie thérapeutique.

Mots clés : Sclérose en plaques ;Troubles urinaires ; Incontinence ; Urodynamic

1. English version

Urinary disorders are often observed in multiple sclerosis (MS) patients [1–10]. This urinary dysfunction can sometimes lead to permanent urological alterations, such as hydronephrosis, reflux, recurrent urinary tract infections, stones, renal alteration, and it always inevitably leads to diminished patient quality of life [11–24]. Overactive bladder (OAB), combined with urgency, frequency, nocturia and urge incontinence, is the most common syndrome, which is sometimes also associated with voiding dysfunction and urinary retention. Clinical evaluation is always necessary. Urodynamic investigations

* Corresponding author.
E-mail address: gerard.amarenco@tnn.aphp.fr (G. Amarenco).
may contribute to a better understanding of the pathophysiology of these symptoms that are generally related to overactive detrusor and detrusor sphincter dyssynergia [11–22].

1.1. Urinary dysfunction in multiple sclerosis (MS) patients

Overactive bladder and voiding dysfunction with a risk of urinary retention, are the most common symptom patterns in MS patients.

Urge incontinence is one of the main symptoms of overactive bladder. Some cases of overactive bladder can be attributed to specific conditions, such as acute or chronic urinary tract infection, and bladder stones, but most cases result from neurologic dysfunction with inability to suppress detrusor contractions. This neurogenic detrusor overactivity can be due in MS to suprapontine lesions or spinal cord lesions (above the lumbo-sacral level). In MS patients neurogenic detrusor overactivity is likely to be mediated by capsacain-sensitive C-fiber afferents. In addition to changes in reflex pathways, it has been demonstrated that a functional outlet obstruction resulting from detrusor sphincter dyssynergia may alter the properties of bladder afferent neurons. Decreased afferents due to pelvic floor deficiency can lead to involuntary detrusor contraction and can be observed in MS patients specially in women. Recently, a role of the urothelium in afferent activation has been strongly suggested. It has been demonstrated that the transduction mechanisms can be altered with modification of the activation of sensory afferent fibers during bladder filling.

Voiding dysfunction and particularly urinary retention can be observed in MS patients. Underactive detrusor can be one of the mechanisms, but in fact the main cause is a detrusor external sphincter dyssynergia (DESD). DESD is characterized by involuntary contractions of the external urethral sphincter during an involuntary detrusor contraction. It is caused by neurological lesions between the brainstem (pontine micturition center) and the sacral spinal cord (sacral micturition center). This is the case in MS patients. DESD was hypothesized to be an abnormal flexor response of the perineal musculature to bladder contraction and considered as a continence reflex exaggerated owing to the loss of supraspinal influences.

This incoordination between detrusor smooth muscle and external urethral sphincter and/or bladder neck, induces an obstruction, which determines excessive bladder pressures during voiding and residual volume. Thereby, the risk of recurrent urinary tract infections, ureteral reflux, hydrenephrosis and pyelonephritis, increases.

Incoordination between bladder and urethra during voiding, determines a weak stream and/or urinary retention. Urinary flow can be low during all the voiding (“tonic dyssynergia”) or can be irregularly interrupted by perineal muscle spasms (“clonic dyssynergia”). Symptoms are often variable and can be influenced by general fatigue, subjet position, bladder repletion, concomitant anorectal dysfunction, urinary tract infection, urinary lithiasis, orthopaedic complications, and generally by any factor inducing spasticity increase.

1.2. Clinical evaluation

Urinary tract dysfunction during the course of MS requires full clinical evaluation since these urinary disorders represent a considerable psychosocial burden and a real risk of upper urinary tract involvement and kidney disease.

A thorough history is always the first step in the evaluation of urinary dysfunction in MS. Onset, duration of complaints, precipitants (position change, urinary tract infection), frequency, severity, quantity, number of pads, constipation, associated diseases (diabetes, surgeries, obesity), medications (e.g., anticholinergics, calcium channel blockers, diuretics, sedatives, alpha-agonists, alpha-antagonists) must be precised [3–14].

Quantitative evaluation of urinary symptoms can be done by means of specific symptoms scores.

The 24-hour bladder diary can provide an accurate record of urinary output, average voided volume, frequency of voiding, and frequency and nature of incontinent episodes, as well as type and volume of fluid intake. Patients are asked to measure their urine output in a measuring cup during any “normal” 24-hour period they choose. Since urinary dysfunction can have a major impact on all aspects of well-being in MS, this impact can be assessed by using validated condition-specific quality of life instruments (Qualiveen questionnaire can be used since this tool is validated in neurogenic patients specially in MS).

Physical examination is necessary to detect contributory factors and any underlying serious medical conditions. Evaluations should always consider associated uro-gynecologic alterations (benign prostatic hypertrophy, associated stress urinary incontinence in female MS patients). The sacral dermatomes should be tested by assessing anal tone, perineal sensation and the bulbocavernous reflex.

Post-void residual (PVR) urine volume is assessed by catheterizing and measuring residual urine within 5 minutes after voiding (or by means of ultrasonography).

Numerous and various symptoms can be observed in MS patients [6–21].

Overactive bladder syndrome characterized by urgency, urinary frequency and/or urge incontinence is very frequent reported in 37 to 99% of patients. Obstructive symptoms with voiding dysfunction, urinary retention are also frequently reported, affecting between 34% and 79% of patients. Overactive bladder and voiding dysfunction often coexist in 50% of the cases.

The clinical presentation of vesicourethral dysfunction is variable over time and there is little correlation between the clinical and urodynamic symptomatology. Two factors are associated with presence and severity of vesicourethral dysfunction: the MS duration and the severity of the neurological deficiencies and disabilities. The prevalence of urinary dysfunction is correlated with the severity of the overall deficiencies (EDSS score). The prevalence of overactive bladder is also correlated with the importance of the pyramidal lesion but no correlation has been found concerning voiding dysfunction. To date, a link between MRI data and urological symptoms has not been established.
Current guidelines concerning management of urinary disorders in MS patients are scarce [1,8–10,13].

The first-line evaluation is based on simple parameters.

A specific questionnaire about voiding must be used in all the patients (frequency, number and easiness of voiding, appraising voiding volume, sensation of complete emptying or not), continence (number and appraising volume of leakage, use of pads), symptoms of urinary tract infection and anorectal symptoms.

Combined rapid tests of urine, “dipstick” test, is advisable for all patients with MS presenting with new bladder symptoms. Negative predictive value for ruling out urinary tract infection is excellent (98%) but the positive predictive value for confirming infection is only 50%.

In all the cases, it is necessary to track down urinary retention. A measure of post-void residual urine by supra-pubic ultrasonography or in-out catheterisation must be done.

When micturitional symptoms are discovered or spontaneously reported during this minimal evaluation, other evaluations must be performed with a three-day voiding chart, an ultrasound scan of the urinary tract, a urine bacteriology, a urodynamic study, a urinary creatinine clearance, and finally an evaluation of the impact of urinary symptoms on a quality of life scale (which may be based on the specific and validated Qualiveen Questionnaire). When risk factors are observed, e.g. high vesical pressure during the filling phase or during micturition, specific radiologic investigations must be performed (CT-scan, cystourethraphy and sometimes renal scintigraphy when urinary creatinine clearance is altered).

Few guidelines are currently available [1,8–10,13].

The FLUE-MS is a tool that is easy to use in clinical practice because it comprises simple visual decision trees and clear ‘red flags’ that lead the physician to specialised advice and specific neuro-urology management in cases where there is a risk of urological complications (Fig. 1).

Furthermore, the incorporation of two very simple UBQMS questions that are easily comprehensible for the patient enable first-line treatment to be administered in cases of both OAB (i.e. urgency, frequency, urge incontinence) and voiding dysfunction (i.e. urinary retention) (Fig. 2). These questions can be systematically answered during successive visits by patients to the neurologist or general practitioner.

FLUE-MS ‘red flags’ are highly individualised and illustrate the complications that can be expected, as reported in the published literature. Identification of one ‘red flag’ is the trigger that leads to a patient being transferred to a neuro-urologist. Recurrent urinary tract infections (UTI), i.e. more than three per year, and UTI with fever, which may indicate pyelonephritis or prostatitis, are recognised as serious risk factors that can lead to renal insufficiency.

Similarly, the presence of hydronephrosis, bladder deformities, such as diverticulum, increased bladder wall thickness and reflux, which are identifiable using ultrasound imaging, are associated with dangerous urodynamic conditions including elevated intravesical pressure, bladder compliance alteration, and severe detrusor sphincter dyssynergia.

Furthermore, post-void residual urine volume of > 100 mL, which can be evaluated by means of in-out catheterisation, often leads to a consideration as to whether there is a need to introduce intermittent catheterisation based on expert advice. Other more complex situations in which specialist intervention is required include cases where there is lumbar pain during voiding, possibly indicating vesical reflux in males > 55 years, since these patients fall within an age range in which urological
UBQMS : Urinary Bothersome Questionnaire in MS

1- OAB (overactive bladder) assessment :
Are you bothered in your daily life by sudden and compelling desire to void, by frequency or by urge incontinence ?
0: not at all
1: slightly
2: strongly
3: enormously

2- Voiding dysfunction assessment :
Are you bothered in your daily life by the need to push to void, by the sensation of incomplete voiding or by a too important duration of your micturition ?
0: not at all
1: slightly
2: strongly
3: enormously

Fig. 2. UBQMS: Urinary Bothersome Questionnaire in Multiple Sclerosis [1].

problems as benign prostatic hypertrophy (BPH) may occur. The need for immune-suppressants necessitates detailed discussions about the potential presence of UTIs and their prevention, and an EDSS > 6 are all specific circumstances in which detailed evaluation and specialist treatment are required.

1.3. Urodynamic evaluation

Urodynamic explorations allow a precise evaluation of pathophysiology of urinary dysfunction and of risk factors for urinary tract damage in MS patients, thus helping to plan their optimal management. Indeed, diagnosis of urinary incontinence and more generally of urinary dysfunction, is complex with intricate pathophysiologic factors. Thus, in many cases, urodynamic investigations are necessary to better understand symptoms pathophysiology and choose the best therapeutic strategies. But in all the cases, urodynamic must be considered as a complementary investigation and always interpreted in conjunction with clinical data and the results of the others morphological and/or radiological investigations [6–17].

Measurement of the urinary flow rate (uroflowmetry) is used to confirm the presence of bladder outlet obstruction and more precisely the presence of a DESD. Urinary flow rate is measured with a flowmeter that measures a quantity of fluid passed per unit time, expressed in mL/s. Uroflow depends on detrusor contractility and urethra-sphincter resistance. Voided volume should be greater than 150 mL. Patients are instructed to void normally as in usual conditions, with a comfortably full bladder, which is sometimes difficult in these MS patients with neurogenic detrusor overactivity leading to a reduced bladder capacity. Measurement of residual urine volume (by means of ultrasounds or catherization) is necessary to properly interpret the uroflowmetry results. The precise shape of the flow curve is decided by detrusor contractility, the presence of any abdominal straining and by the bladder outlet. A normal flow curve is a smooth curve without any rapid changes in amplitude. Rapid changes in flowrate may evoke detrusor sphincter dyssynergia with lack of urethral sphincter relaxation during micturition and sometimes involuntary flow interruption and abdominal straining.

Cystometry is the method used to measure the pressure-volume relationships of the bladder. The intravesical pressure is measured while the bladder is filled, but this simple technique is not accurate because intravesical pressure does not represent in all the cases the true detrusor pressure; as the bladder is an intra-abdominal organ, the intravesical pressure is subjected to changes (during cough, patient movements...) and not represent the real detrusor pressure. Thus, it is more appropriate to use substracted cystometry, which involves measurement of both the intravesical and intra-abdominal pressure simultaneously. Electronic substraction of the intra-abdominal pressure from the intravesical pressure enables detrusor pressure measurements. In current practice intra-abdominal pressure is estimated from rectal pressure. In MS patients in complete urinary retention (for example under self intermittent catherisation), only bladder pressure without rectal pressure measurement can be used. Urinary tract infection should always be checked before urodynamic investigation. Artificial bladder filling is used, via a catheter, with sterile water or normal saline. The filling phase starts when filling commences and ends when the patient and urodynamic expert decide that “permission to void” has been given. In current practice the filling rate is usually 50 mL/min. Different events must be analysed during filling and voiding phases: first sensation of bladder filling (feeling of the bladder filling), first desire to void, strong desire to void. Increased bladder sensation is
defined as an early first sensation of bladder filling (or an early desire to void) and/or an early strong desire to void, which occurs at low bladder volume and which persists. Reduced bladder sensation is defined as diminished sensation throughout bladder filling. Absent bladder sensation means that, during filling cystometry, the individual has no bladder sensation. Urgency, during filling cystometry, is a sudden compelling desire to void.

Assessment of the detrusor function during filling cystometry is one of the major goals of the urodynamic investigation in MS patients with urinary dysfunction. All detrusor activity before the “permission to void” is defined as “involuntary detrusor activity”. Normal detrusor function is defined as bladder filling with little or no change in pressure. No involuntary phasic contractions occur despite provocation (rapid filling, ice water, postural changes, hand washing). Detrusor overactivity is a urodynamic observation characterised by involuntary detrusor contractions during the filling phase which may be spontaneous or provoked. In MS, there are certain patterns of detrusor overactivity: phasic detrusor overactivity is defined by a characteristic wave form and may or may not lead to urinary; terminal detrusor overactivity is defined as a single, involuntary detrusor contraction, occurring at cystometric capacity, which cannot be suppressed and results in incontinence usually resulting in bladder emptying (voiding).

Bladder compliance describes the relationship between change in bladder volume and change in detrusor pressure. Compliance (C) is calculated by dividing the volume change (∆V) by the change in detrusor pressure (Δpdet) during any change in bladder volume (C= ∆V/Δpdet). Cystometric capacity is the bladder volume at the end of the filling cystometrogram, when “permission to void” is usually given.

The most frequent cystometric finding in MS patients is detrusor overactivity (mean occurrence of 65%, ranges from 34% to 99%) followed by detrusor underactivity (mean occurrence of 25%, ranges from 0% to 40%) and poor bladder compliance (2 to10%). Detrusor sphincter dyssynergia is observed in 35% of the patients. Cystometry can be considered normal in 1/3 of symptomatic patients. Cystometrogram may change over time independently of any micturitional and neurological clinical stability.

There is no influence of age on the urodynamic patterns but in contrary, gender may be an independent factor of influence, with a significant increase in the maximum amplitude of the involuntary detrusor contractions, of the detrusor leak point pressure (lowest detrusor pressure at which urine leakage occurs in the absence of either a detrusor contraction or increased abdominal pressure) and of the maximum detrusor pressure in men as compared to women. Duration of the MS evolution is only correlated with the presence or not of a detrusor sphincter dyssynergia.

There is no specific urodynamic presentation linked to progression form, remittent or progressive, although a link has been reported between the MS activity and urodynamic presentation.

The correlation between detrusor overactivity, detrusor sphincter dyssynergia and the severity of sensory-motor deficiencies (EDSS) or of pyramidal damage appears probable. In contrary, no correlation between underactive detrusor and neurological status has been found. Finally, the existence of a correlation between certain lesion levels and the cystometric data remains controversial, but the presence of encephalic or suprasacral lesions and lesions on the brain stem may be a predisposing factor for dyssynergia and detrusor underactivity respectively.

Urodynamic investigations allow the diagnosis of DESD in MS patients with voiding dysfunction. The classic test to recognize detrusor external sphincter dyssynergia is combined cystometry and external sphincter electromyography. Meanwhile, DESD can be suggested if a flowmetry examination is possible to perform, when an interrupted urine flow with residual volume are observed.

Cystometry may be recorded with a rectal pressure measurement to analyse abdominal pressure simultaneously with bladder pressure to eliminate artifacts due to abdominal muscle contraction. Indeed, the diagnosis of DESD requires a detrusor contraction. However, many MS patients are unable to initiate such a contraction, particularly in severe DESD. Furthermore, in moderate DESD, some patients will strain to try to urinate, which causes a simultaneous increase in sphincter activity, bladder and rectal pressure. Sphincter dyssynergia is diagnosed by increased EMG activity during an involuntary detrusor contraction. DESD is further suggested by a high voiding pressure, persistent elevated MUP (maximal urethral pressure). Smooth sphincter dyssynergia is more difficult to confirm. Video imaging techniques allow the diagnosis of bladder neck dyssynergia. Fluoroscopic imaging during an involuntary contraction objectifies persistent narrowing of the internal sphincter and/or of the bladder neck.

When the micturition is possible, combined uroflow and sphincter EMG (eventually with a single rectal pressure record) allow DESD screening.

In fact, a very common and important question, is whether dyssynergia can be diagnosed in the absence of a bladder contraction. Even if the DESD rigorous definition is not applicable, we can consider that DESD is the only mechanism of urinary retention in a MS patient who have overactive bladder without bladder neck or urethral organic obstruction (urethral stenosis, prostatic hypertrophy).

However, recognizing DESD is not the main problem in the management of MS bladder. The real challenge is not to prove absolutely DESD with urodynamic tests, but to evaluate its consequences, especially high detrusor pressure during storage and/or micturition, which can determine bladder or renal complications.

1.4. Conclusion

Urinary incontinence, overactive bladder and more generally urinary dysfunction is a major clinical problem and a significant cause of disability in MS patients. Indeed, the bothersome symptom of urinary dysfunction may adversely affect social relationships and activities in these patients. Since many causes of urinary dysfunction are described, a thorough
2. Version française

Des troubles vésico-sphinctériens sont souvent constatés au cours de la sclérose en plaques (SEP) [1–10]. Cette dysfonction urinaire aboutit parfois à des altérations urológiques permanentes dont l’hydronephrose, le reflux, les infections urinaires récurrentes, des calculs, et des altérations de la fonction rénale ; de manière inéductible, la qualité de vie du patient en pâtit [11–24]. L’hyperactivité vésicale, qui se traduit par des urgenturies l’urgence, une pollakiurie, une nycturie et une incontinence urinaire, en est le syndrome le plus répandu, parfois associée à une dysurie voire à une rétention urinaire. Une évaluation clinique est toujours nécessaire. Le bilan urodynamique peut améliorer la compréhension des mécanismes des différentes symptômes, qui sont généralement le fait d’une hyperactivité détrusorienne et d’une dyssynergie vésico-sphinctérienne [11–22].

2.1. Les troubles vésico-sphinctériens chez les patients atteints de la sclérose en plaques (SEP)

L’hyperactivité vésicale et la dysurie avec risque de rétention urinaire sont les symptômes les plus fréquents chez les patients atteints de la SEP.

L’incontinence par urgenturie figure parmi les symptômes principaux de l’hyperactivité vésicale, parfois secondaire à des conditions médicales spécifiques (infections urinaires aiguës ou chroniques, calculs vésicaux), mais le plus souvent dus au dysfonctionnement neurologique avec incapacité à inhiber des contractions involontaires du détrusor. L’hyperactivité neurogène du détrusor peut s’expliquer dans la SEP par des lésions suprapontiques ou de la moelle épinière (au-dessus du niveau lombo-sacré). Chez les patients atteints de cette maladie, l’hyperactivité neurogène du détrusor est médulée par des fibres C afférentes sensibles à la capsacine. En plus des modifications des voies réflexes, il a été démontré qu’une obstruction à l’évacuation due à la dyssynergie vésico-sphinctérienne (DVS) peut altérer les propriétés des neurones afférents de la vessie dont la diminution conduit dans certains cas à la contraction involontaire du détrusor qui est souvent observée chez les patientes atteintes de la SEP. Assez récemment, le rôle de l’urothélium dans l’activation des neurones afférents a été souligné. En outre, il a été démontré que les mécanismes de transduction sont altérés, ce qui entraîne la modification de l’activation des fibres afférentes sensorielles pendant le remplissage de la vessie.

La dysurie et surtout la rétention urinaire sont observées chez des patients atteints de SEP. Même si l’hypoactivité du détrusor peut figurer parmi les mécanismes impliqués, en fait la cause principale est la dyssynergie détrusor sphincter (DVS). La DVS DDS est caractérisée par des contractions involontaires du sphincter urétrial externe pendant une contraction involontaire du détrusor. Elle résulte de lésions entre le tronc cérébral (centre pontique de la miction) et la moelle épinière sacrée (centre sacré de la miction) qui existent chez les patients atteints de la SEP. La DVS a pu être considérée comme une réponse anormale des fléchisseurs de la musculature perinéale à la contraction de la vessie ; il s’agirait d’un réflexe de continence dont l’exagération serait due à la perte des influences supraspinales.

L’incoordination entre le détrusor et le sphincter urétrial externe et/ou le col de la vessie induit l’obstruction qui détermine l’élévation excessive de la pression vésicale pendant l’évacuation de l’urine ainsi que le volume résiduel, ce qui aggrave le risque d’infections urinaires récurrentes, de reflux urétrial, d’hydronephrose et de pyélonéphrite.

L’incoordination entre la vessie et l’urètre pendant l’évacuation donne lieu à un jet faible et/ou à la rétention urinaire. Soit le débit urinaire est bas pendant toute l’évacuation (« dyssynergie tonique »), soit le flux urinaire est interrompu de temps à autre par des spasmes du péripinée (« dyssynergie clonique »). Le symptômes sont variables et susceptibles d’être influencés par la fatigue générale, la posture du sujet, le degré de répétition de la vessie, les troubles ano-rectaux concomitants, les infections urinaires, la lithiase urinaire, des complications orthopédiques et de manière générale, n’importe quel facteur contribuant à l’augmentation de la spasticité.

2.2. L’évaluation clinique

Des troubles vésico-sphinctériens au cours de la SEP nécessitent une évaluation clinique complète puisque de tels désordres représentent une charge psychosociale importante et comportent un risque avéré d’altération des voies urinaires supérieures et de maladies rénales.

La connaissance complète du dossier médical constitue toujours la première étape de l’évaluation des troubles vésico-sphinctériens dans la SEP. Le début du désordre, la durée de l’affection, les éléments précipitants (modification de posture, infections urinaires), la fréquence, la sévérité, la quantité, le nombre de protections, la constipation, les pathologies associées (diabète, interventions chirurgicales, obésité), les médicaments (par exemple, anticholinergiques, inhibiteurs calciques, diurétiques, sédatifs, alpha-agonistes, alpha-antagonistes) doivent impérativement être précisés [3–14].

L’évaluation quantitative des symptômes urinaires peut être réalisée en s’appuyant sur des scores spécifiques.
Un catalogue mictionnel (niveau 3) tenu en permanence pendant 2 jours heures peut permettre un relevé précis, de la diurèse, du volume d’urine moyen, de la fréquence d’évacuation, de la fréquence et nature des épisodes d’incontinence et du type et volume d’apport hydrique. On demande aux patients de mesurer leur débit volume urinaire dans un récipient gradué pendant la période « normale » de 24 heures de leur choix. Etant donné que les troubles vésico-sphinctériens risquent d’avoir un impact majeur sur tous les aspects du bien-être des personnes atteintes de la SEP, celui-ci peut être évalué en utilisant des instruments de mesure de qualité de la vie adaptés à cette pathologie. Ainsi, le questionnaire Qualiveen est approprié car validé auprès de patients neurogéniques, particulièrement dans la SEP.

Un examen médical est nécessaire en vue de détecter des facteurs contributifs et d’éventuelles affections sous-jacentes. Les évaluations doivent toujours tenir compte des altérations uro-gynécologiques associées (l’hypertrophie bénigne de la prostate, l’incontinence urinaire d’effort chez les femmes atteintes de la SEP). Les dermatomes sacrés sont à tester en évaluant le tonus anal, les sensations périnéales et le réflexe bulbocaverneux.

Le volume du résidu post-mictionnel (RPM) est évalué en cathétérisant et en mesurant ce résidu soit dans les 5 minutes suivant l’évacuation, soit par cathétérisme, soit par échographie.

Des symptômes nombreux et variés sont observés dans les patients atteints de SEP [6–21].

Le syndrome d’hyperactivité vésicale caractérisé par l’urgence, la pollakiurie et/ou l’incontinence urinaire a été relevé dans 37 % 99 % des cas relevés. Des symptômes d’obstruction dont des troubles d’évacuation et la rétention urinaire sont également très répandus, ayant été signalés dans 34 % à 79 % des cas. Et dans 50 % des cas, il y a coexistence d’hyperactivité vésicale et troubles d’évacuation.

La présentation clinique des troubles vésico-urétraux varie dans le temps, et il y a peu de corrélation entre la symptomatologie clinique et la symptomatologie urodynamic

ique. Deux facteurs sont pourtant associés à la présence et à la sévérité des troubles vésico-urétraux, à savoir la durée de la SEP et la sévérité des déficiences et infirmités neurologiques. La prévalence des troubles vésico-sphinctériens est corrélée à la sévérité des déficiences globales (score EDSS). La prévalence de l’hyperactivité vésicale est également en corrélation avec l’importance de la lésion pyramidale, mais aucune corrélation n’a été retrouvée par rapport aux troubles d’évacuation des urines. Et jusqu’à présent, aucun lien entre les données en IRM et les symptômes urologiques n’a été établi.

Il n’existe pas beaucoup de recommandations concernant le traitement des troubles vésico-sphinctériens dans la population SEP C [1,8–10,13].

L’évaluation initiale repose sur des paramètres assez simples.

Un questionnaire spécifique sur l’évacuation d’urine est utilisé par la plus des patients : fréquence, nombre de mictions, éventuelles difficultés d’évacuation, évaluation du volume d’urine, sensation d’évacuation complète ou incomplète ; continence (quantité et volume de fuite accidentelle, utilisation de couches) : symptômes ano-rectaux et d’infection urinaire.

Une analyse rapide d’urine par bandelette, est conseillée pour tout patient atteint de SEP et présentant de nouveaux symptômes vésicaux. Bien que sa valeur prédictive négative soit fort élevée (98 %), sa valeur prédictive positive ne s’élève qu’à 50 %.

Il est toujours nécessaire de vérifier l’existence d’une rétention urinaire. Le volume du résidu post-mictionnel par échographie supra-pubique ou par sondage aller-retour est impérativement à mesurer.

Lorsque des troubles mictionnels sont détectés ou rapportés de manière spontanée pendant cette évaluation minimale, d’autres évaluations sont à effectuer en utilisant un catalogue mictionnel de 3 jours, une échographie des voies urinaires, une analyse bactériologique, une étude urodynamique, une estimation de la clairance de la créatinine urinaire et, en dernier lieu, une évaluation de l’impact des symptômes urinaires à l’aide d’une échelle de qualité de vie dont le questionnaire Qualiveen adapté et validé peut servir de modèle. Lorsque des facteurs de risque dont la pression vésicale élevée pendant la phase de remplissage ou de miction sont observés, des investigations radiologiques spécifiques doivent être réalisés (CT-scan, cystourethrogramie et parfois une scintigraphie rénale lorsque que la clairance de la créatinine urinaire est altérée).

Peu de recommandation sont actuellement disponibles [1,8–10,13].

La FLUE-MS est un outil intéressant pour la pratique clinique. Il qui comporte de simples arbres de décision visuels ainsi que des signes avant-coureurs, les « drapeaux rouges » qui incitent le médecin à référer le patient dans un centre spécialisé pour conseils sur les traitements neuro-uroligiques dès l’instant où il y a un risque de complications urologiques (Fig. 1).

En outre, l’intégration de deux questions UBQMS simples, que le patient comprendra sans problème, facilite l’administration d’un traitement de première intention dans des cas tant d’hyperactivité vésicale (urgence mictionnelle, fréquence, incontinence urinaire) que de troubles de l’évacuation dont la rétention urinaire (Fig. 2). Des réponses à ces questions peuvent être obtenues de manière systématique lors des consultations du neurologue ou du médecin traitant.

Les signes avant-coureurs mis en évidence avec FLUE-MS sont fortement personnalisés et servent à illustrer des complications à prévoir qui figurent dans la littérature. L’identification de tel ou tel « drapeau rouge » est l’élément déclencheur qui amène le transfert du patient au neurologue. Des infections urinaires récurrentes (plus de trois fois par an) accompagnées d’une fièvre pouvant indiquer la pyélonéphrite sont reconnues comme des facteurs de risque importants et susceptibles de conduire à l’insuffisance rénale.

De manière similaire, la présence d’îdronephrose ou de déformations de la vessie (diverticule, épaisseur accrue de la paroi de la vessie, reflux...) identifiables à l’aide de l’échographie va de pair avec des conditions urodynamiques dangereuses dont la pression intravésicale élevée, l’altération de la compliance vésicale et une sévère dyssynergie du détrusor sphinctérien.
En outre, lorsque le volume du résidu post-mictionnel s’élève à > 100 mL, ce qui peut être établi par sondage, la question de la nécessité du cathétérisme intermittent est souvent posée. Parmi les autres situations plus complexes qui nécessitent l’intervention d’un spécialiste figurent des cas de douleur lombaire pendant l’évacuation, traduisant parfois un reflux vésical chez des hommes de plus de 55 ans, tranche d’âge souvent caractérisée par des problèmes urologiques dont l’hypertrophie bénigne de la prostate (HBP). Le besoin éventuel d’immunosupresseurs nécessite des discussions approfondies sur la présence et la prévention d’infections urinaires, et un score EDSS supérieur à 6 doit conduire à une évaluation approfondie, voire à des traitements proposés par un spécialiste.

2.3. L’évaluation urodynamique

L’exploration urodynamique permet une évaluation précise des mécanismes des troubles vésico-sphinctériens et des
facteurs de risque concernant la dégradation des voies urinaires et contribue à optimiser le traitement de patients atteints de la SEP. Le diagnostic d’incontinence urinaire et, de manière plus globale, de dysfonctionnement urinaire, met en jeu des mécanismes physiopathologiques intriqués et complexes. Dans de nombreux cas, des investigations urodynamiques s’imposent en vue de mieux comprendre l’ensemble de symptômes et de choisir les meilleures stratégies thérapeutiques. Or dans tous les cas, le bilan urodynamique est à considérer comme un examen complémentaire et à interpréter conjointement avec les données cliniques et les résultats d’autres investigations, qu’elles soient morphologiques et/ou radiologiques [6-17].

La mesure du débit urinaire (débitmétrie) est effectuée afin de confirmer l’obstruction et, plus précisément, une éventuelle DVS. Le débitmètre mesure la quantité de fluide évacuée par unité de temps est exprimée en mL/s. Le débit urinaire dépend de la contractilité du détrusor et de la résistance du sphincter urénal. Le volume mictionnel devrait être supérieur à 150 mL. On demande aux patients d’évacuer normalement, comme dans les conditions usuelles et avec la vessie confortablement pleine, ce qui est parfois difficile dans une population de patients atteints de la SEP avec hyperactivité neurogène du détrusor, phénomène qui conduit à la réduction de la capacité vésicale. Afin d’interpréter correctement les résultats de la débitmétrie, il est également nécessaire de mesurer par échographie ou cathétérisme le volume urinaire résiduel. La forme précise de la courbe du débit dépend en majeure partie de la contractilité du détrusor, d’une éventuelle poussée abdominale et, de manière plus générale, du col vésical. Une courbe du débit normale est une courbe assez lisse, sans changements rapides d’amplitude. Au contraire, des changements rapides de débit peuvent amener à conclure à la dyssynergie détrusor sphincter (DVS) avec absence de relâchement du sphincter urénal pendant la miction et, dans certains cas, avec l’interruption involontaire du débit et poussée abdominale.

La cystométrie est la méthode utilisée pour mesurer les rapports entre la pression et le volume de la vessie. La pression intravésicale est mesurée lorsque la vessie est pleine, mais cette simple technique manque de précision parce que cette pression ne représente pas dans tous les cas la pression réelle du détrusor ; puisque la vessie est un organe intra-abdominal, la pression intravésicale subit des modifications pendant la toux (parmi d’autres mouvements du patient) et ne reflète donc pas de manière exacte la pression détrusorienne. Il est préférable d’utiliser la cystométrie à soustraction, qui mesure simultanément la pression intravésicale et la pression intra-abdominale. Ainsi, la soustraction électronique de la pression intra-abdominale de la pression intravésicale rend possible l’évaluation de la pression détrusorienne. Dans la pratique courante, la pression intra-abdominale est estimée à partir de la pression rectale. Or chez les patients atteints de la SEP qui sont en rétention urinaire complète (par exemple l’auto-cathétèrisme intermittent), seule la pression sur la vessie, c’est-à-dire sans évaluation de la pression rectale, peut être mesurée utilement. D’autre part, avant toute investigation urodynamique il importe de vérifier l’infection des voies urinaires. À l’aide d’un cathéter et en utilisant de l’eau stérile ou un soluté salin normal la vessie est remplie de manière artificielle. La phase de remplissage commence au début du remplissage et se termine lorsque le patient et l’expert urodynamic ont décidé que « l’autorisation à uriner » a été accordée. Dans la pratique courante le volume de remplissage avoisine les 50 mL/min. Pendant les phases de remplissage et d’évacuation, différents événements sont à analyser : d’abord la sensation de remplissage de la vessie, ensuite l’arrivée du désir d’évacuer, et enfin le désir impératif d’uriner. L’augmentation de la sensation vésicale est définie comme l’arrivée précoces d’une première sensation de remplissage de la vessie (ou le désir précoces d’uriner) et/ou le désir persistant, impératif et précoce d’uriner, alors que la quantité d’urine est relativement faible. La diminution de la sensation vésicale est définie comme la diminution de la sensation pendant toute la phase de remplissage. L’absence de sensation vésicale signifie que pendant la cystométrie de remplissage, le patient est dépourvue de sensations vésicales. L’urgence pendant la cystométrie de remplissage, est définie comme le désir subit et impératif d’uriner.

L’évaluation de la fonction détrusorienne pendant la cystométrie de remplissage est l’un des buts majeurs de l’investigation urodynamique chez des patients atteints de la SEP et souffrant de troubles urinaires. Toute l’activité détrusorienne avant « l’autorisation d’uriner » est définie comme relevante de « l’activité détrusorienne involontaire ». Quant à la fonction détrusorienne normale, elle est définie comme le remplissage de la vessie sans modification, ou peu de modification de la pression. Malgré les provocations (remplissage rapide, eau glaciée, changements de posture, lavage des mains), aucune contraction phasique involontaire n’intervient. L’hyperactivité détrusorienne est une observation urodynamique caractérisée par des contractions involontaires du détrusor, qu’elles soient spontanées ou provoquées, pendant la phase de remplissage. Dans la SEP, cette hyperactivité obéit à quelques schémas, dont celui de l’hyperactivité phasique qui est définie par une forme d’onde caractéristique qui peut conduire mais ne conduit pas forcément à des troubles urinaires. En revanche, l’hyperactivité détrusorienne terminale est définie comme la contraction unique et involontaire de ce muscle qui survient lorsque la capacité cystométrique est atteinte, est irrépressible et donne lieu à l’incontinence lors de l’évacuation (vidange) de la vessie.

La compliance vésicale décrit le rapport entre la modification du volume de la vessie et la modification de la pression du détrusor. La compliance (C) est calculée en divisant le changement de volume (ΔV) par le changement de pression détrusorienne (Δpdet) au cours de n’importe quelle modification du volume de la (C = ΔV/Δpdet). La capacité cystométrique est le volume de la vessie à l’issue du cystométrogramme de remplissage, quand « l’autorisation d’uriner » est généralement accordée.

Le résultat d’études cystomanométriques le plus fréquent chez des patients atteints de la SEP concerne l’hyperactivité du détrusor (occurrence moyenne de 65 %, de 34 à 99 %), qui est suivie par l’hypoactivité détrusorienne (occurrence moyenne de 25 %, de 0 à 40 %) et la mauvaise compliance vésicale (2 à 10 %). La dyssynergie du détrusor sphinctérien est observée
chez 35 % des patients. Or chez un tiers environ des patients symptomatiques, la cystométrie peut être considérée comme normale. Quant au cytomégramme, il est susceptible de subir dans le temps des modifications indépendamment de toute stabilité mictionnelle et neurologique clinique.

Alors que l’âge n’exerce pas d’influence sur les schémas urodynamiques, le sexe peut constituer un facteur indépendant, ce qui se traduit par une hausse significative de l’amplitude maximale des contractions détrusorielles involontaires, de la pression de fuite du détrusor (pression détrusorienne la plus basse à laquelle une fuite accidentelle d’urine a lieu en l’absence d’une contraction du détrusor ou d’une hausse de pression abdominale) et de la pression maximale du détrusor constatée davantage chez des hommes que chez des femmes. La durée de l’évolution de la SEP n’est corrélée qu’avec la présence ou absence de la DVS.

Même s’il n’existe pas de présentation urodynamique spécifique liée à la forme de progression (rémittente ou progressive), un lien entre l’activité de la SEP et la présentation urodynamique a été relevé.

Une corrélation entre l’hyperactivité détrusorienne, la DVS et la sévérité des déficiences sensorielles et motrices (DSM) ou des atteintes de la voie pyramidale semble assez probable. Par contre, aucune corrélation n’a été établie entre l’hypactivité détrusorienne et l’état neurologique du patient. Pour conclure, la postulation d’une corrélation entre certains niveaux de lésion et les données cystométronométriques prête toujours à discussion ; cela dit, la présence de lésions encéphaliques ou suprasacrées et de lésions du tronc cérébral est susceptible de prédéposer respectivement à la dyssynergie et à l’hyperactivité détrusorienne.

L’investigation urodynamique permet de diagnostiquer la DVS chez des patients atteints de la SEP et souffrant de troubles d’évacuation. L’examen classique aboutissant à la reconnaissance de la dyssynergie du détrusor sphinctérien extérieur combine la cystométrie et l’électromyographie du sphincter externe. En même temps, la DVS peut être évoquée dès qu’une débitmétrie est réalisable et que l’on observe un flux d’urine interrompu avec volume résiduel.

La cystométrie est relevée en mesurant la pression rectale, ce qui permet d’analyser simultanément la pression abdominale et la pression vésicale afin d’éliminer des artefacts dus à la contraction du muscle abdominal. En effet, le diagnostic de la DVS nécessite la contraction du détrusor. Cependant, de nombreux patients atteints de la SEP ne sont pas capables d’initier une telle contraction, particulièrement dans des cas de DVS sévère. Et même dans certains cas de DVS modérée, le patient peine en essayant d’uriner, ce qui suscite la hausse simultanée de l’activité sphinctérienne et de la pression vésicale et rectale. La dyssynergie sphinctérienne est diagnostiquée en décelant une augmentation d’activité EMG pendant une contraction détrusorienne involontaire. Elle est également évoquée en constatant une pression élevée de miction et la persistance d’une PUM (pression urétrale maximale) élevée. La confirmation de la dyssynergie sphinctérienne lisse est plus compliquée. L’imagerie vidéo permet toutefois le diagnostic de la dyssynergie du col de la vessie. L’imagerie fluoroscopique pendant une contraction involontaire permet de visualiser le resserrement persistant du sphincter interne et/ou du col de la vessie.

Dès lors qu’il est possible d’uriner, le débit urinaire accompagné de l’EMG du sphincter (dans certains cas avec un relevé seulement de la pression rectale) permettra le dépistage de la DVS.

Dans la pratique clinique, une question fréquente et importante consiste à savoir si oui ou non la dyssynergie peut être diagnostiquée en l’absence de contraction de la vessie. Quand bien même la définition rigoureuse de la DVS ne serait pas applicable, nous pouvons estimer que la DVS constitue l’unique mécanisme de rétention urinaire chez un patient atteint de la SEP qui présente une vessie hyperactive sans obstruction urérale ou du col de la vessie (sténose urérale, hypertrophie de la prostate).

La détection de la DVS n’est pourtant pas le problème principal à résoudre dans le traitement de la vessie en cas de SEP. Le véritable défi ne consiste pas à fournir des preuves de sa présence en s’appuyant sur des examens urodynamiques, mais plutôt à évaluer ses conséquences, dont notamment la pression détrusorienne élevée pendant la phase de remplissage et/ou la miction, alors que cette pression est peut-être déterminante dans la survenue de complications vésicales ou rénales.

2.4. Conclusion

L’incontinence urinaire, l’hyperactivité de la vessie et, de manière plus générale, les troubles vésico-sphinctériens représentent un problème clinique majeur et handicapant de manière significative bon nombre de patients atteints de SEP. La gêne occasionnée par de tels symptômes peut affecter les relations sociales du patient et ses activités quotidiennes. En raison des très diverses types et mécanismes de dysfonction urinaire qui ont pu être décrites au cours de la SEP, une évaluation complète doit être effectuée incluant examen clinique et appréciation de la qualité de vie.

L’évaluation clinique est toujours l’étape principale dans l’évaluation et la prise en charge des troubles vésico-sphinctériens observés chez les patients atteints de SEP. L’utilisation de questionnaires est fortement recommandée afin d’améliorer la compréhension des symptômes et de faciliter la décision thérapeutique. Qu’elles soient biologiques, radiologiques ou urodynamiques, pour n’importe quel patient symptomatique des investigations sont indiquées. En outre, l’utilisation d’algorithmes spécifiques comme FLUE-MS peut contribuer à la détection de complications et, a fortiori, au suivi des patients.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References


