Original article

Posterior surgery in high-grade spondylolisthesis

R. Lengert a,*, Y.P. Charles a, A. Walter a, S. Schuller a, J. Godet b, J.-P. Steib a

a Service de Chirurgie du Rachis, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France

b Département de Santé Publique, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France

A R T I C L E I N F O

Article history:
Accepted 27 March 2014

Keywords:
High-grade spondylolisthesis
Lumbosacral fusion
Slippage parameters
Sagittal balance
Segmental lordosis
Instrumentation length

A B S T R A C T

Introduction: High-grade L5-S1 spondylolisthesis alters sagittal spinopelvic balance, which can cause low back pain and progressive neurologic disorder. The present study assessed spondylolisthesis reduction and maintenance over time with L4-S1 versus L5-S1 fusion using a lever-arm system and posterior fusion combined with lumbosacral graft.

Materials and methods: Forty patients were operated on for symptomatic high-grade spondylolisthesis, 34 of whom had full pre- and post-operative radiological analysis, with a mean follow-up of 5.4 years. There were 9 L5-S1 and 25 L4-S1 instrumentations. Analysis of spinopelvic and slipping parameters and the evolution of segmental lordosis compared results between L5-S1 and L4-S1 instrumentation.

Results: Mean Taillard spondylolisthesis index decreased from 64% to 37% (P<0.0001). Overall sagittal spinopelvic balance was not significantly changed. Overall L1-S1 and segmental L4-L5 lordosis were not affected by instrumentation. Mean L5-S1 segmental lordosis increased from 11° to 18°. There was loss of reduction from 19° to 14° with L5-S1 instrumentation, in contrast to maintained reduction with L4-S1 instrumentation (P=0.006).

Conclusion: The lever-arm system provided anterior-posterior reduction of spondylolisthesis and corrected slippage. Postoperative change in overall sagittal spinopelvic balance was slight and constant. Posterior L4-S1 fusion provided better long-term control of L5-S1 lordosis reduction than the shorter L5-S1 fusion. Retrospective study of level IV.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Spondylolisthesis consists in a vertebra slipping over the underlying one, and involves the L5-S1 segment in 80% of cases. It is graded on the Meyerding classification [1]. It can be totally asymptomatic, but may also evolve, inducing low back pain and progressive neurologic disorder [2–4]. High-grade spondylolisthesis involves slippage exceeding 50% (grades III and IV). Lower back pain and onset of radiculalgia are indications for surgery in adults. There are presently several anterior or posterior fusion techniques to achieve reduction and intervertebral fusion by posterolateral and intersomatic grafting [3,5–8]. Fusion between the L5 body and sacrum and posterolateral bone graft are essential in severe deformity. Circumferential fusion ensures long-term lumbosacral junction stability, limiting L5–S1 shear stress, which could otherwise lead to loosening of the osteosynthesis and reduction loss. In the early postoperative course, this risk is increased by L5 radicle release when the posterior L5 arch is resected in the isthmic lysis, creating considerable unstable continuity between L5 and S1.

Reduction seeks to restore lumbosacral sagittal balance in case of strong pelvic tilt, sacral slope and lumbar lordosis [2,9,10]. Morphology and sagittal balance affect the form of the lumbar spine and hence the mechanical stress at the lumbosacral junction. In high-grade spondylolisthesis, the deformity must therefore be reduced and aligned so as to restore balance and reduce stress in order to optimize fusion.

The usefulness of long L4-S1 rather than short L5-S1 instrumentation is controversial, as it sacrifices the L4-L5 disc. However, shear stress on L5 screws is considerable, incurring a risk of reduction loss or loosening with short instrumentation. Supplementary L4 anchorage spreads stress and enables instrumentation to end on a more horizontal vertebra, reducing the stress on the individual pedicle screws.
2. Material and methods

Between 2002 and 2009, 40 consecutive patients were operated on for symptomatic high-grade spondylolisthesis in our department. Only complete imaging files were analyzed: i.e., 34 patients, mean age 30.2 years (range, 13–44 years). Mean follow-up was 5.4 years (range, 3–11 years). On preoperative Meyerding classification, there were 23 grade III and 11 grade IV cases. Surgery involved 9 L5-S1 and 25 L4-S1 instrumentations. Lumbosacral screwing was performed in 30 cases and fibular grafting in 4.

Radiography comprised AP and lateral lumbar spine views and lateral full-spine view taken preoperatively and at 3 months, 6 months, 1 year and at last follow-up (minimum, 3 years). Radiologic evolution was analyzed for Meyerding grade, percentage slip on the Taillard index, Dubousset lumbosacral angle, pelvic tilt, pelvic version, sacral slope, thoracic kyphosis and sagittal vertical axis (SVA). To limit error induced by sacral dome deformity, a line was drawn through the widest part of S1, perpendicular to the vertical axis of the sacrum. L1-S1 lordosis and L4-L5 and L5-S1 segmental lordosis were measured between adjacent vertebral plates.

Our treatment strategy comprised 1 week’s preoperative gentle halo traction, which was maintained intraoperatively. A posterior approach allowed canal release and L5 root neurolysis following Gill [11]. Pediclar screws were positioned in L5 and S1, connected up by reduction plates (Fig. 1). During reduction, a lever-arm maneuver progressively drew and pivoted L5 over the sacrum, lowering S1 (Fig. 2). Reduction was maintained by posterior instrumentation. Systematic posterolateral bone graft was performed, with an associated posterior lumbosacral graft using a hollow modular anchorage (HMA) screw or an autologous fibular graft. The entry point was between S1 and S2, oriented toward the anterosuperior plate of L5. Posterior instrumentation was applied at L5-S1 or L4-S1 according to the surgeon’s preference (Figs. 3 and 4).

Balance was assessed on R software (version 2.15.1). Assembly-related effects were compared on a mixed covariance model.

Parameter stability over time was assessed on ANOVA plus post-hoc Tukey or Dunnett test.

3. Results

Table 1 presents the parameters of vertebral slippage correction: Meyerding grade and Taillard index showed enduring significant reduction between preoperative deformity values and last follow-up (from Meyerding grade III to grade II). In 1 patient, reduction from grade V to grade IV was not maintained, with subsequent return to grade V. Dubousset angle increased significantly and durably, from a mean 84° preoperatively to 106° at end of follow-up.

Table 2 presents change in sagittal spinopelvic balance, thoracic kyphosis and SVA. Pelvic tilt remained around a mean 77°; pelvic version showed no significant change, remaining around 26°; thoracic kyphosis and SVA likewise remained stable and within normal limits.
Table 1
Mean (range) pre- and post-operative slipping parameters.

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>3 months</th>
<th>6 months</th>
<th>1 year</th>
<th>Last FU</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meyering</td>
<td>3 (3 to 5)</td>
<td>2 (1 to 4)</td>
<td>2 (1 to 4)</td>
<td>2 (1 to 4)</td>
<td>2 (1 to 5)</td>
<td>P < 0.0001</td>
</tr>
<tr>
<td>Taillard</td>
<td>64% (36% to 100%)</td>
<td>36% (0% to 94%)</td>
<td>37% (0% to 84%)</td>
<td>37% (0% to 96%)</td>
<td>37% (0% to 100%)</td>
<td>P = 0.0001</td>
</tr>
<tr>
<td>Dubousset</td>
<td>89% (44% to 130%)</td>
<td>104% (64% to 130%)</td>
<td>105% (72% to 126%)</td>
<td>107% (74% to 145%)</td>
<td>106% (68% to 128%)</td>
<td>P = 0.0005</td>
</tr>
</tbody>
</table>

Table 2
Mean (range) pre- and post-operative spinopelvic parameters, thoracic kyphosis and sagittal vertical axis (SVA).

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>3 months</th>
<th>6 months</th>
<th>1 year</th>
<th>Last FU</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt</td>
<td>78° (50° to 128°)</td>
<td>73° (43° to 97°)</td>
<td>73° (100° to 35°)</td>
<td>73° (33° to 102°)</td>
<td>76° (40° to 104°)</td>
<td>P = 0.457</td>
</tr>
<tr>
<td>Version</td>
<td>27° (14° to 52°)</td>
<td>26° (23° to 68°)</td>
<td>26° (16° to 46°)</td>
<td>26° (16° to 44°)</td>
<td>26° (15° to 44°)</td>
<td>P = 0.214</td>
</tr>
<tr>
<td>Sacral slope</td>
<td>48° (18° to 84°)</td>
<td>44° (23° to 68°)</td>
<td>48° (18° to 73°)</td>
<td>49° (20° to 73°)</td>
<td>50° (14° to 73°)</td>
<td>P = 0.412</td>
</tr>
<tr>
<td>Thoracic kyphosis</td>
<td>40° (35° to 76°)</td>
<td>38° (30° to 72°)</td>
<td>38° (28° to 69°)</td>
<td>35° (26° to 68°)</td>
<td>32° (28° to 69°)</td>
<td>P = 0.255</td>
</tr>
<tr>
<td>SVA</td>
<td>37 mm (17 to 59)</td>
<td>33 mm (22 to 60)</td>
<td>36 mm (19 to 63)</td>
<td>32 mm (20 to 57)</td>
<td>30 mm (20 to 60)</td>
<td>P = 0.318</td>
</tr>
</tbody>
</table>

Table 3
Mean (range) overall and segmental lordoses.

<table>
<thead>
<tr>
<th>Lordosis</th>
<th>Preoperative</th>
<th>3 months</th>
<th>6 months</th>
<th>1 year</th>
<th>Last FU</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1-S1</td>
<td>59° (16° to 108°)</td>
<td>58° (38° to 82°)</td>
<td>62° (34 to 85°)</td>
<td>64° (30° to 83°)</td>
<td>61° (28° to 82°)</td>
<td>P = 0.960</td>
</tr>
<tr>
<td>L4-L5</td>
<td>23° (3° to 40°)</td>
<td>18° (10° to 34°)</td>
<td>19° (10° to 40°)</td>
<td>20° (10° to 34°)</td>
<td>20° (5° to 38°)</td>
<td>P = 0.130</td>
</tr>
<tr>
<td>L5-S1</td>
<td>11° (−34° to 38°)</td>
<td>19° (−4° to 33°)</td>
<td>16° (−5° to 36°)</td>
<td>17° (−2° to 35°)</td>
<td>18° (−5° to 34°)</td>
<td>P = 0.0053</td>
</tr>
</tbody>
</table>

Fig. 4. Postoperative radiograph showing reduction with lumbosacral screwing.

Table 3 presents change in lordosis values. Overall, L1-S1 and segmental L4-L5 lordosis were unchanged by instrumentation, at around 60° for L1-S1 and with a fall from 23° to 20° for L4-L5. L5-S1 segment lordosis increased significantly and durably, from a mean 11° to 18° (negative preoperative values indicate kyphosis).

Change in segmental lordosis was compared according to L5-S1 versus L4-S1 instrumentation. Table 4 shows significant loss of angular reduction as of 1 year postoperatively with short instrumentation, with L5-S1 increasing from an immediate postoperative value of 19° to 14° by end of follow-up with L5-S1 instrumentation, while remaining constant at around 20° with L4-S1 instrumentation; L4-L5 lordosis remained constant with both types of instrumentation.

L5-S1 fusion was confirmed radiographically. The posterolateral bone graft was generally well visualized on AP views, while intersomatic grafts were harder to assess. CT control was more precise, but not implemented systematically. However, 7 symptomatic non-unions (i.e., 17%) were found at last follow-up, accounting for the deterioration in slip found in certain patients. There was only 1 case of HMA screw breakage associated with non-union; 2 other patients showed fibular graft fracture.

4. Discussion

Management of high-grade spondylolisthesis remains controversial, with varying treatment attitudes. Even so, lumbosacral fusion appears mandatory in case of radicular symptoms or chronic low back pain or of risk of evolution toward spondylolisthesis [4]. Surgical treatment seeks firstly to achieve stable reduction of the spondylolisthesis and lumbosacral fusion, and secondarily to restore sagittal balance [2,6,7].

In adults, circumferential (posterolateral or intersomatic) fusion is generally recommended. Several surgical strategies are available: posterior instrumentation associated to anterior ALIF L5-S1 grafting [12], posterior fusion with PLIF intersomatic graft [13,14], and posterior instrumentation with lumbosacral fusion [15,16]; the latter may use a fibular graft, or else an HMA screw, requiring sacral laminectomy with entry between the S1 and S2 roots, representing an alternative to PLIF posterior intersomatic fusion, which necessitates resection of the sacral dome.

High-grade spondylolisthesis patients generally show a sagittal spinopelvic morphotype entailing a predisposition for slipping: elevated pelvic tilt associated with elevated sacral slope, pelvic version and lumbar lordosis above the deformity [12,17,18]. Vialle et al. [19] reported a mean pelvic tilt of 76°, sacral slope 50° and pelvic version 29° with lumbosacral kyphosis. Labelle et al. [20,21] reported pelvic tilt ranging from 71° to 79°, sacral slope 49° to 50°, pelvic version 22° to 30° and overall lordosis 66° to 77°. These findings agree with the present result. There are, however, 2 distinct morphotypes: lumbosacral balance, with horizontal sacrum and steep sacral slope; and lumbosacral imbalance, with verticalized sacrum and L5 pivoting on the sacral dome [18]. This accounts for the variation in sacral slope and L5-S1 angle between kyphosis and lordosis.

In high-grade spondylolisthesis, reduction is frequently limited, to avoid paralyzing the L5 roots. Martiniani et al. [13] perform in-situ fixation or limited reduction to correct a mean 87% to 40%
slip. Karampalis et al. [12] achieve progressive reduction by external fixator, reducing grade III to V slip to grade II to 0. Progressive traction on long-armed pedicular screws is an alternative postoperative treatment. Vialle et al. [19] reported no pre- to postoperative change in version, as in the present study. Reducing and lowering S1 did not improve spinopelvic balance: values remained greater than in the general population, with mean version of 12.1° ± 21°. Even so, partial reduction and balancing of the spondylolisthesis was attained.

Spondylolisthesis can be reduced and lordosis stabilized by several lumbosacral instrumentation techniques. Labelle et al. [20] corrected overall lumbar lordosis from 77° to 66° by posterior instrumentation. Sasso et al. [15] used fibular grafting to secure the assembly. Lakshmanan et al. [16] used a cannulated HMA screw, with 100% consolidation on radiographic control. The present study used a comparable system of posterior and lumbosacral fixation.

Other than assessing spondylolisthesis reduction on this surgical technique, the present study hypothesized that longer instrumentation would provide more enduring reduction of lumbosacral lordosis. Posterior L4-S1 instrumentation indeed seemed to provide more enduring L5-S1 reduction, spreading shear stress on L4 and L5. However, it sacrifices the L4-L5 disc, unlike short instrumentation restricted to L5-S1 [22].

5. Conclusion

In high-grade spondylolisthesis, the lever-arm technique provided good reduction, with correction of slip. Partial reduction maintained by fusion has a symptomatic aim in the lumbosacral region. Improved overall sagittal balance would be desirable, but the sagittal parameters of spinopelvic balance were not greatly affected, with little change over postoperative course. Reduction was maintained by lumbosacral fusion and by posterior fusion. L4-S1 fusion seemed to provide more enduring reduction than did L5-S1 fusion.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

References