Finite element analysis of posterior cervical fixation

Y. Duan 1, H.H. Wang 1, A.M. Jin, L. Zhang, S.X. Min, C.L. Liu, S.J. Qiu, X.Q. Shu*

Department of Orthopaedics, Zhu Jiang Hospital, Southern Medical University, No. 253, Gongye Big Road, 510282 Haizhu District, Guangzhou, People’s Republic of China

ARTICLE INFO

Article history:
Accepted 21 November 2014

Keywords:
Three-column injuries
Finite element model
Posterior cervical fixation technique

ABSTRACT

Background context: Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI).

Hypothesis: The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications.

Materials and methods: A detailed, geometrically accurate, nonlinear C3–C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4–C6 TCI. A compressive preload of 74 N combined with a pure moment of 1.8 Nm in flexion, extension, left–right lateral bending, and left–right axial rotation was applied to the FEMs.

Results: The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap–rod–screw interface.

Conclusions: The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Injuries to the cervical spine present a significant clinical dilemma with potentially devastating outcomes. Injuries to the subaxial cervical spine accounts for the majority of cervical injuries, making up about 65% of fractures and > 75% of all dislocations [1]. In the last past few decades, posterior cervical fixation for subaxial cervical reconstruction has proliferated largely as a result of better outcome. The use of posterior cervical fixation offer immediate stability for the injured spine, and prevents the sequela of acute cervical spinal cord injury, thus allowing early rehabilitation and the potential for improved recovery.

The use of screw-rod systems represents a large step forward from previous posterior cervical fusion devices, which are biomechanically superior to facet and spinous process wiring [2–7]. Furthermore, the screws can be inserted by this technique and often have a polyaxial head that allows for different screw insertion techniques at varying degrees and, by connecting rigidly to a rod, allowing for a degree of compression or distraction [8]. A variety of posterior cervical screw–rod fixation techniques have been developed to internally stabilize the subaxial cervical spine by using a posterior fixation. These include pedicle screw (PS), lateral mass screw (LS), and transarticular screw (TS) technique.

Despite fixation techniques of subaxial cervical spine remains largely descriptive, biomechanical tests were used in the past to investigate the techniques [5,7], lacking detailed internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). Though several fine element models (FEMs) of cervical spine have been reported in recent studies, effort in analysing structural response

* Corresponding author.
E-mail address: shuxq2012@163.com (X.Q. Shu).

1 Yang Duan and Hehui Wang contributed equally to this work. Yang Duan and Hehui Wang are co-first authors.

http://dx.doi.org/10.1016/j.otsr.2014.11.007
1877-0568/© 2014 Elsevier Masson SAS. All rights reserved.
to external loading, especially to evaluate the posterior internal fixation, is still lacking [9,10].

Therefore, the purpose of this study is targeted to the biomechanical comparison of the fixation devices following three posterior cervical fixation techniques currently used in the treatment of cervical instability after TCI: PS, LS, and TS techniques. Immediate stability, variability and distribution of stresses in posterior cervical fixation devices were evaluated using FEMs.

2. Methods

2.1. FE modelling and validation

The C3–C7 was developed by the reconstruction of a 3D CT of the cervical spine of a male subject (age 32, height 170 cm, weight 68 kg). The study was approved by the ethical committee of Southern Medical University. Coronal CT images were taken with the space interval of 0.625 mm in the neutral unloaded position. The images were segmented using MIMICS 12.1 (Materialise, Leuven, Belgium) to obtain the boundaries of the skeletal and intervertebral disc surface. The geometry of the skeletal and intervertebral disc components was processed using Geomagic Studio 10.0 (Geomagic, Inc, Research Triangle Park, NC, USA) to smoothen the uneven surface caused by the stacking of the medical images. It was then imported into the FE package ABAQUS v6.9.1. (SIMULIA Inc, Providence, RI, USA) to build the numerical model.

The intact FE model shown in Fig. 1 consists of five vertebrae (C3, C4, C5, C6, and C7), four intervertebral discs (C3–C4, C4–C5, C5–C6, and C6–C7), and includes all the important components of the cervical spine such as cortical bone, cancellous bone, intervertebral discs, and ligaments. Each intervertebral disc consisted of disc annulus and disc nucleus.

For modelling of vertebral bodies and posterior elements, solid elements were used, but the material was described as isotropic. Two types of bones were taken into consideration: cortical and cancellous. For cortical bone of the vertebral body, which is a very thin sheet, shell elements were used. For cancellous part, solid tetrahedral element was used. To simplify the model, the cortical endplate and cortical shell with 0.4 mm thickness [11] was attached to the solid cancellous elements by sharing the similar node. The endplates were considered to be part of the cortical structure located in the inferior and superior surface of all the vertebral bodies, and with the same material property used for cortical bone.

Six different ligaments approximating the ligamentous structures in the cervical spine were incorporated into the FE model as tension-only nonlinear connectors: anterior and posterior longitudinal ligaments, interspinous ligament, spinous ligaments, ligamentum flavum, and capsular ligaments. Their insertion points were chosen to mimic anatomic observations as closely as possible [12,13]. Material and mechanical properties shown in Table 1 for each spinal component represented the most commonly used values obtained from the literature [14–17].

Static analysis was conducted by imposing 1.8 Nm of flexion-extension, left–right lateral bending, and left–right axial rotation moments with 74 N of axial compression superior to C3. The boundary condition was simulated by fixing the inferior surface of the C7 vertebra with all degrees of freedom constrained. The axial precompression force and the moments were loaded to the superior surface of C3. The facet joints were simulated using frictionless contact.

This study was performed using the FE software ABAQUS. Validation of the intact model was done by comparing the predicted results with those reported in the literature. All the predicted responses were in good agreement with the published data reported in the literature about in vitro studies. Our previous study shows the details of the in vitro data used in the comparison [18].

2.2. FE model surgery simulation

All models were based on a validated model of the aforementioned intact C3–7 model. It was then imported into the FE package ABAQUS to build the two-level TCI simulation model. The spinous ligamentum, the ligamentum flavum, posterior longitudinal ligaments, capsular ligaments and the middle and posterior part of discs were excised to simulate as closely as possible to the three-column injuries condition.

Three FEMs were built, each model simulated posterior cervical fixation after two-level TCI at C4–6. The internal fixation systems were implanted with three fixation techniques in the models after two-level TCI (C4–6). The size and location of screws and rods were confirmed in the intact C3–7 model using MIMICS to obtain the appropriate internal fixation systems. The surfaces of the screws and screw holes were simulated by imposing an ideal rough behaviour (infinite friction coefficient) to the tie-contact pair, thus preventing extraction. The internal fixation system material was assumed to be titanium and modelled as linear elastic isotropic with an elastic modulus of 145 GPa. The 3 models were designed to simulate the stage immediately postoperatively and thus did not take into account bone fusion.

The same boundary and loading conditions were applied to the 3 models. A compressive preload with 74 N was imposed on the upper endplate of C3 in all simulations. Three simulations were run for each model by applying a pure moment of 1.8 Nm in different directions (flexion–extension, lateral bending, and axial rotation) to the upper endplate of C3.

2.3. Biomechanical comparison

The range of intersegmental motions and total motions were analysed to evaluate the stability of each fixation technique. The stability was measured by intersegmental rotational angle and the total angle of total motions in different loading conditions (flexion–extension, left–right lateral bending, and left–right axial rotation).

Stress analyses were carried out and the variability of von Mises stress and high stress–level were compared among the posterior fixation devices to predict the tendency of fracture according to the fixation techniques. It was implicitly hypothesized that fracture tendency is related to the variability of von Mises stress and high stress-level. The maximum variability and stress-level of von Mises were analysed as a measurement were analysed as a measurement of the potential for fracture due to different fixation techniques, based on the assumption that maximum variability
Table 1
Material and mechanical properties of different parts used in the finite element model.

<table>
<thead>
<tr>
<th>Component</th>
<th>Young's modulus (MPa)</th>
<th>Poisson's ratio</th>
<th>Element type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone and Endplate</td>
<td>12000.0</td>
<td>0.3</td>
<td>Triangular shell element</td>
</tr>
<tr>
<td>Cancellous bone</td>
<td>100.0</td>
<td>0.25</td>
<td>Tetrahedral element</td>
</tr>
<tr>
<td>Disc–nucleus</td>
<td>3.4</td>
<td>0.4</td>
<td>Hexahedral element</td>
</tr>
<tr>
<td>Disc–annulus</td>
<td>1.0</td>
<td>0.49</td>
<td>Tetrahedral element</td>
</tr>
<tr>
<td>titanium</td>
<td>145000.0</td>
<td>0.3</td>
<td>Tetrahedral element</td>
</tr>
<tr>
<td>Ligament</td>
<td>Nonlinear tension-only connector</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C3-C5

<table>
<thead>
<tr>
<th>Anterior Longitudinal</th>
<th>Posterior Longitudinal</th>
<th>Spinous</th>
<th>Ligamentum Flavum</th>
<th>Capsular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deflection (mm)</td>
<td>Force (N)</td>
<td>Deflection (mm)</td>
<td>Force (N)</td>
<td>Deflection (mm)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>1</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>2</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>3</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
<td>4</td>
<td>78</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>5</td>
<td>89</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>115</td>
<td>6</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>7</td>
<td>32.5</td>
<td></td>
</tr>
</tbody>
</table>

C5-C7

<table>
<thead>
<tr>
<th>Anterior Longitudinal</th>
<th>Posterior Longitudinal</th>
<th>Spinous</th>
<th>Ligamentum Flavum</th>
<th>Capsular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deflection (mm)</td>
<td>Force (N)</td>
<td>Deflection (mm)</td>
<td>Force (N)</td>
<td>Deflection (mm)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>1</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>2</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>4</td>
<td>78</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>5</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>112</td>
<td>6</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>7</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. The surgery-simulated FE models with PS technique.

Fig. 3. The surgery-simulated FE models with LS technique.

and high stress-level concentration results in greater possibility of fixation device fracture.

3. Results

3.1. FE model surgery simulation

Fig. 1 illustrates surgery-simulated FE models. Figs. 2–4 illustrates surgery-simulated FE models with PS, LS, and TS techniques. In this study, the screws and screw holes were assumed to be fully integrated. Their surfaces were simulated by imposing an ideal rough behaviour (infinite friction coefficient) to the tie-contact pair, thus preventing extraction. The unit finite element size was 0.2 mm and the total numbers of finite elements were over 3,000,000 for all models so as to incorporate the full details of the complicated lower cervical geometries.

3.2. Intersegmental and total motions analyses

Compared to the normal model, the intersegmental motion of the C4–5 and C5–6 segment decreased with posterior cervical
fixation. However, compared to the reconstructed model by TS and PS technique, the Intersegmental and total motions of the reconstructed model by LS techniques have the noticeable differences, especially in the adjacent segment as presented in Figs. 5–7.

3.3. Stress analyses

Qualitative investigation of the stress features on fixation devices can predict the tendency of fracture according to the fixation techniques. The effect of fixation location on load transfer can be evaluated from the result of stress concentration. Under flexion, extension, left–right lateral bending, and left–right axial rotation conditions, the stress distributions on the fixation devices was shown in Fig. 8, Fig. 9 shows maximal von Mises stress comparisons among the fixation techniques in flexion, extension, left–right lateral bending, and left–right axial rotation conditions. We noted that the screws inserted by TS technique had high stress concentration at the middle part of the screw. Screw inserted by PS and LS technique had high stress concentration at the actual cap-rod-screw interface. Under flexion-extension conditions, the stress results showed that the variability of von Mises stress in the TS fixation device was minimum, in the LS fixation device was maximum. Under the other conditions, there were no obvious significant differences in the variability of von Mises stress.

4. Discussion

Classification of spinal injuries is difficult due to the complex anatomy of vertebrae, the presence of a three-joint complex, and the many ligamentous structures responsible for stability. Appropriate classification of this fracture is the first step toward successful treatment. Why we chose the Denis’ three-column theory [19] as the injury classification system? Because Denis’ three-column theory system be categorized as morphologic. It can describe the pathoanatomy in our study. In the actual clinical work, we use SLIC to do some clinical evaluation The Subaxial Cervical Spine Injury Classification system (SLIC) evaluates fracture morphology, the discoligamentous complex, and neurologic function, creating a comprehensive system to aid treatment decision making [1]. The system assigns points for each domain and if the score exceeds a threshold, surgery would be indicated. SLIC can help to define treatment or imply prognosis.

The LS and PS techniques are the common techniques for stabilization of the cervical spine. Application of LS technique in cervical trauma cases resulted in fusion rates greater than 95% when autogenous bone grafting was combined [20,21]. The LS technique includes several techniques like Roy-Camille, Magerl, and Anderson technique. The Roy-Camille technique demonstrated a progressive decrease of its safety zone from C3–C6. Such variations were not observed for the Magerl technique [22]. In the actual clinical work and our study, we used the same Magerl technique.

Because lateral mass screws often achieve inadequate purchase, pedicle fixation of the lower cervical spine and upper thoracic vertebrae has been proposed. Transpedicular screws have been...
shown to have more fixation stability than other cervical spine reconstruction systems. However, because PS technique has the potential to seriously injure the spinal cord, nerve roots, or vertebral arteries, it is generally considered a high-risk procedure [23].

Transarticular screw in the lower cervical spine had been used as an alternative technique to achieve posterior cervical spine stability [7]. It has been shown that transarticular screws have significantly higher pullout strength than lateral mass screws [24] and may be as adequate for fixation in the cervical spine as they have been in the lumbar spine [25]. TS technique should be less technically demanding to insert with less risk to the patient. Xu et al. recently published that TS technique was safely used in the cervical spine as an anchor screw in combination with posterior instrumentation or as stand-alone fixation [26]. Furthermore, Takayasu et al. recently demonstrated that they could be safely placed clinically under fluoroscopic control [27]. Clinically, TS technique offers surgeons a more economic and potentially safe option when treating cervical trauma.

As we know, FEMs can repeat experiments theoretically and study impact responses in supplement of cadaveric tests. Our purpose of the projects is to evaluate if there are differences among the three techniques of fixation in response to Motions and stress features on fixation devices.

Intersegmental and total motions Analyses showed that the intersegmental motion of the C4–5 and C5–6 segment decreased with posterior cervical fixation, whereas the Intersegmental and total motions of the reconstructed model by LS technique have noticeable advance. According to the related literatures, there was no significant difference when compared to the different fixation technique. The intrinsic strength of the posterior fixation devices provides immediate stabilization and currently available clinical papers have reported good clinical outcomes. However,
the intersegmental and total motions of the C3–C7 can reflect the immediate stabilization may be inferred for the fixation techniques. As LS technique only can control posterior column, the mobility of the anterior column may play a role in decreasing the immediate stabilization. In our opinion, spinal surgeon uses the LS technique to treat cervical TCI, adding anterior cervical operation is necessary for acquiring a better immediate stabilization, according to the relevance of the intersegmental and total motions.

Our study showed that the screws inserted by LS technique had high stress concentration at the middle part of the screw. Screw inserted by PS and LS technique had high stress concentration at the actual cap–rod–screw interface. The stress distribution on fixation devices is similar to our previous study about posterior cervical fixation following laminectomy [18]. Under flexion–extension conditions, the stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Under the other conditions, there were no obvious significant differences in the variability of von Mises stress. It was implicitly hypothesized that fracture tendency is related to the variability of von Mises stress and high stress level. The maximum variability and stress-level of von Mises were analysed as a measurement a measurement of the potential for fracture due to different fixation techniques based on the assumption that maximum variability and high stress-level concentration results in greater possibility of fixation device fracture. According to the relevance of the maximum variability and stress-level of von Mises, our study suggested that suitably prolonging the need for external bracing is necessary for reducing the higher risk of fracture on PS and LS technique fixation devices. The reasons why the fixation devices with TS technique have the lowest risk of fracture are caused by many factors. The most important factor is breaking the mobility of the zygaphysical joint by TS technique.

In the present study, the calculated results are dependent on the actual simulated conditions and should be evaluated only from a comparison point of view. The models were designed to simulate the stage immediately postoperatively and thus did not take into account bone fusion. This worst-case scenario may lead to an overestimation in all simulations. Another limitation of the present study pertains to the bone–screw interface, which was modelled as bonded, thus neglecting any possible micro-motion. Furthermore, spine degeneration was not considered; thus the anatomy and the material properties were modelled with reference to the healthy condition. Despite this, a comparison between the different fixation techniques is still possible and analysis results have clinic instructive significance to posterior cervical fixation technique.

5. Conclusions

The use of posterior cervical fixation offers immediate stability of the cervical spine following TCI, thus allowing early rehabilitation. Consequently, the researchers consider that spinal surgeon should use the TS technique firstly to treat cervical TCI. If use PS technique to treat it, we should suitably prolong the need for external bracing for reducing the higher risk of fracture on fixation devices. If use LS technique to treat it, we should add anterior cervical operation for acquire a better immediate stabilization.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

Funding: no funding received.

References


