S'abonner

A numerical model to reproduce squeaking of ceramic-on-ceramic total hip arthroplasty. Influence of design and material - 09/05/16

Doi : 10.1016/j.otsr.2016.03.005 
P. Piriou a, G. Ouenzerfi b, H. Migaud c, , E. Renault d, F. Massi b, M. Serrault e
a Clinique du parc, 6, avenue du Morvan, 71400 Autun, France 
b Institut National des Sciences Appliquées de Lyon (INSA), Laboratoire de Mécanique des Contacts et des Structures, bâtiment Jean-d’Alembert, 18-20, rue des Sciences, 69621 Villeurbanne cedex, France 
c Université de Lille, Département Universitaire de Chirurgie Orthopédique et de Traumatologie, place de Verdun, 59000 Lille, France 
d Tornier, 161, rue Lavoisier, 38334 Montbonnot, France 
e Clinique Saint-Dominique, 99, rue de Messei, 61100 Flers, France 

Corresponding author. Tel.: +03 20 44 68 28; fax: +03 20 44 66 07.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Abstract

Background

Modern ceramic (CoC) bearings for hip arthroplasty (THA) have been used in younger patients who expect improved survivorship. However, audible squeaking produced by the implant is an annoying complication. Previous numerical simulations were not able to accurately reproduce in vitro and in vivo observations. Therefore, we developed a finite element model to: (1) reproduce in vitro squeaking and validate the model by comparing it with in vivo recordings, (2) determine why there are differences between in vivo and in vitro squeaking frequencies, (3) identify the stem's role in this squeaking, (4) predict which designs and materials are more likely to produce squeaking.

Hypothesis

A CoC THA numerical model can be developed that reproduces the squeaking frequencies observed in vivo.

Material and methods

Numerical methods (finite element analysis [ANSYS]) and experimental methods (using a non-lubricated simulated hip with a cementless 32mm CoC THA) were developed to reproduce squeaking. Numerical analysis was performed to identify the frequencies that cause vibrations perceived as an acoustic emission. The finite element analysis (FEA) model was enhanced by adjusting periprosthetic bone and soft tissue elements in order to reproduce the squeaking frequencies recorded in vivo. A numerical method (complex eigenvalue analysis) was used to find the acoustic frequencies of the squeaking noise. The frequencies obtained from the model and the hip simulator were compared to those recorded in vivo.

Results

The numerical results were validated by experiments with the laboratory hip simulator. The frequencies obtained (mean 2790Hz with FEA, 2755Hz with simulator, decreasing to 1759Hz when bone and soft tissue were included in the FEA) were consistent with those of squeaking hips recorded in vivo (1521Hz). The cup and ceramic insert were the source of the vibration, but had little influence on the diffusion of the noise required to make the squeaking audible to the human ear. The FEA showed that diffusion of squeaking was due to an unstable vibration of the stem during frictional contact. The FEA predicted a higher rate of squeaking (at a lower coefficient of friction) when TZMF™ alloy is used instead of Ti6Al4V and when an anatomic press-fit stem is used instead of straight self-locking designs.

Discussion

The current FEA model is reliable; it can be used to assess various stem designs and alloys to predict the different rates of squeaking that certain stems will likely produce.

Level of evidence

Level IV in vitro study.

Le texte complet de cet article est disponible en PDF.

Keywords : Total hip arthroplasty, Squeaking, Finite element analysis, Ceramic bearing


Plan


© 2016  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 102 - N° 4S

P. S229-S234 - juin 2016 Retour au numéro
Article précédent Article précédent
  • Cross-finger flap for reconstruction of fingertip amputations: Long-term results
  • F. Rabarin, Y. Saint Cast, J. Jeudy, P.A. Fouque, B. Cesari, N. Bigorre, A. Petit, G. Raimbeau
| Article suivant Article suivant
  • Efficiency of locking-plate fixation in isolated talonavicular fusion
  • R. Chatellard, J. Berhouet, J. Brilhault

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.