Médecine

Paramédical

Autres domaines


S'abonner

Global regularity of two-dimensional flocking hydrodynamics - 20/07/17

Doi : 10.1016/j.crma.2017.05.008 
Siming He a , Eitan Tadmor a, b, 1
a Department of Mathematics, Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD, USA 
b Institute for Physical Sciences & Technology (IPST), University of Maryland, College Park, MD, USA 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 11
Iconographies 0
Vidéos 0
Autres 0

Abstract

We study the systems of Euler equations that arise from agent-based dynamics driven by velocity alignment. It is known that smooth solutions to such systems must flock, namely the large-time behavior of the velocity field approaches a limiting “flocking” velocity. To address the question of global regularity, we derive sharp critical thresholds in the phase space of initial configuration that characterizes the global regularity and hence the flocking behavior of such two-dimensional systems. Specifically, we prove for that a large class of sub-critical initial conditions such that the initial divergence is “not too negative” and the initial spectral gap is “not too large”, global regularity persists for all time.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous étudions les systémes des équations d'Euler qui résultent de dynamiques d'alignement entre agents. Il a été prouvé que, pour des solutions régulières de tels systémes, en temps grand, le champ de vitesse s'approche d'une vitesse limite uniforme. Nous identifions des seuils critiques dans l'espace de phase de la configuration initiale qui caractérisent la régularité globale et donc le comportement en temps grand de tels systèmes bidimensionnels. Plus précisément, nous prouvons que, pour une classe assez large de conditions initiales sous-critiques telles que la divergence initiale n'est « pas trop négative » et l'écart spectral initial n'est « pas trop grand », la régularité globale reste vraie en temps grand.

Le texte complet de cet article est disponible en PDF.

Plan


© 2017  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 355 - N° 7

P. 795-805 - juillet 2017 Retour au numéro
Article précédent Article précédent
  • On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations
  • Pierre Cardaliaguet, Panagiotis E. Souganidis
| Article suivant Article suivant
  • A trace formula for functions of contractions and analytic operator Lipschitz functions
  • Mark Malamud, Hagen Neidhardt, Vladimir Peller

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.