S'abonner

On a Liouville-type theorem for the Ginzburg–Landau system - 07/09/17

Sur un théorème de type Liouville pour le système de Ginzburg–Landau

Doi : 10.1016/j.crma.2017.07.001 
Christos Sourdis
 University of Athens, Greece 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 3
Iconographies 0
Vidéos 0
Autres 0

Abstract

We prove that entire, complex valued solutions to the Ginzburg–Landau system with positive real and imaginary parts are constant in any spatial dimension. This property was shown very recently only in the planar case.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous prouvons que des solutions complexes au système de Ginzburg–Landau dans l'espace entier avec des parties réelles et imaginaires positives sont constantes dans toute dimension spatiale. Cette propriété a été démontrée très récemment, mais seulement dans le cas planaire.

Le texte complet de cet article est disponible en PDF.

Plan


© 2017  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 355 - N° 8

P. 903-905 - août 2017 Retour au numéro
Article précédent Article précédent
  • Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces
  • Pierre Cantin
| Article suivant Article suivant
  • Sharp weighted estimates involving one supremum
  • Kangwei Li

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.