Médecine

Paramédical

Autres domaines


S'abonner

Toral and spherical Aluthge transforms of 2-variable weighted shifts - 14/12/17

Doi : 10.1016/j.crma.2016.10.005 
Raúl E. Curto a , Jasang Yoon b
a Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA 
b School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 5
Iconographies 2
Vidéos 0
Autres 0

Abstract

We introduce two natural notions of Aluthge transforms (toral and spherical) for 2-variable weighted shifts and study their basic properties. Next, we study the class of spherically quasinormal 2-variable weighted shifts, which are the fixed points for the spherical Aluthge transform. Finally, we briefly discuss the relation between spherically quasinormal and spherically isometric 2-variable weighted shifts.

Le texte complet de cet article est disponible en PDF.

Résumé

Nous introduisons deux notions naturelles des transformations d'Aluthge (torales et sphériques) pour les shifts pondérés à deux variables et nous étudions leurs propriétés. Ensuite, nous étudions la classe de shifts pondérés à deux variables sphériques et quasi-normaux, qui sont les points fixes pour la transformation d'Aluthge sphérique. Enfin, nous discutons brièvement la relation entre les shifts pondérés à deux variables qui sont sphériquement quasinormaux et ceux qui sont sphériquement isométriques.

Le texte complet de cet article est disponible en PDF.

Plan


 The first author of this paper was partially supported by NSF Grant DMS-1302666.


© 2016  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 354 - N° 12

P. 1200-1204 - décembre 2016 Retour au numéro
Article précédent Article précédent
  • On the structure of invariant Banach limits
  • Egor Alekhno, Evgeniy Semenov, Fedor Sukochev, Alexandr Usachev
| Article suivant Article suivant
  • Interpolation : B? = B? pour un ? entraîne B? = B? pour tout ?
  • Mohammad Daher

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.