S'abonner

Azalomycin F5a, a polyhydroxy macrolide binding to the polar head of phospholipid and targeting to lipoteichoic acid to kill methicillin-resistant Staphylococcus aureus - 09/12/18

Doi : 10.1016/j.biopha.2018.11.067 
Ganjun Yuan a, , Li Xu a, Xuejie Xu a, Peibo Li b, Qiwang Zhong a, Hailin Xia a, Yamei Hu a, Pingyi Li a, Xiaoyuan Song a, Junfang Li a, Qianru Liu a
a College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China 
b College of Life Sciences, Sun Yat-Sen University, 135 Xingan Road, Guangzhou 510275, China 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 11
Iconographies 10
Vidéos 0
Autres 0

Graphical abstract

This research confirmed that azalomycin F5a can increase the membrane permeability of MRSA cell, and which had likely achieved by the synergy of its lactone ring binding to the polar head of phospholipid and its guanidyl side chain targeting to lipoteichoic acid (LTA). This would subsequently cause the release of cellular substance, and eventually lead to the autolysis of MRSA cells. Nevertheless, it is unknown how azalomycin F5a interacts with MRSA cellular LTA, such as influencing the physiological function of LTA, inhibiting LTA synthase and polymerase, and/or accelerating the release of LTA?




Le texte complet de cet article est disponible en PDF.

Highlights

Azalomycin F5a can increase cell-membrane permeability to kill Staphylococcus aureus.
Azalomycin F5a disrupts the cell membrane by interacting with phospholipid.
The lactone ring of azalomycin F5a can stably bind to the polar head of phospholipid.
Azalomycin F5a-induced lysis of MRSA can be inhibited by cellular lipoteichoic acid.
The guanidyl chain of azalomycin F5a likely targets to lipoteichoic acid of S. aureus.

Le texte complet de cet article est disponible en PDF.

Abstract

Azalomycin F5a was a polyhydroxy macrolide produced by streptomycete strains. Our preliminary researches indicated that it could kill methicillin-resistant Staphylococcus aureus (MRSA) likely by increasing the permeability of cell membrane, and that cell-membrane phospholipids were likely important targets. To confirm this, membrane permeability assay was performed and visualized by fluorescence staining, and then the detailed interactions between azalomycin F5a and model membranes prepared with 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) were determined using attenuated total reflectance fourier transform infrared spectroscopy and 31P nuclear magnetic resonance techniques. The results indicated that there were strong interactions between azalomycin F5a and model membranes, especially between azalomycin F5a and the polar head of phospholipid. For further evidence and details, the molecular dynamics (MD) simulation of the interactions between azalomycin F5a and DPPG or lysyl-DPPG were performed using Amber16 software package. A strong interaction between the lactone ring of azalomycin F5a and the polar head of DPPG or lysyl-DPPG had been clearly observed. Moreover, a larger distribution probability out of phospholipid bilayer had been discovered for the guanidyl side chain of azalomycin F5a, especially when probable anion molecules anchoring on the cytoplasmic membrane occurred. Therefore, lipoteichoic acid (LTA), a vital component of gram-positive bacterial envelope, was investigated for its probable interactions with azalomycin F5a using broth microdilution method. The results showed that azalomycin F5a-induced MRSA lysis could be prevented by LTA. This deduced that there were some interactions between azalomycin F5a, more likely its guanidyl side chain, and LTA. Thereby, azalomycin F5a increasing the cell-membrane permeability of MRSA had likely achieved by the synergy of its lactone ring binding to the polar head of phospholipid and its guanidyl side chain targeting to LTA, and which had eventually led to the autolysis of MRSA cells.

Le texte complet de cet article est disponible en PDF.

Chemical compounds studied in this article : Azalomycin F5a (CID: 73425500), DPPG (CID: 65144), Lysyl-DPPG (CID: 122706358)

Keywords : Azalomycin F, Lipoteichoic acid, Phospholipid, MRSA, Macrolide, Phosphatidylglycerol


Plan


© 2018  The Authors. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 109

P. 1940-1950 - janvier 2019 Retour au numéro
Article précédent Article précédent
  • Dual-function of triptriolide in podocytes injury: inhibiting of apoptosis and restoring of survival
  • Yi-qi Yang, Jian Liang, Xiao-dong Han, Rui-min Tian, Xu-sheng Liu, Wei Mao, Hong-tao Xu, Bo Liu, Peng Xu
| Article suivant Article suivant
  • Neferine inhibits growth and migration of gastrointestinal stromal tumor cell line GIST-T1 by up-regulation of miR-449a
  • Fangxi Xue, Zhaoxia Liu, Jian Xu, Xiaoguang Xu, Xingtian Chen, Feng Tian

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.