Médecine

Paramédical

Autres domaines


S'abonner

Comparison of Several Algorithms to Estimate Activity Counts with Smartphones as an Indication of Physical Activity Level - 13/03/19

Doi : 10.1016/j.irbm.2018.12.001 
V.H. Rodriguez a, , C. Medrano a, b , I. Plaza a, b , C. Corella c , A. Abarca c , J.A. Julian c
a EduQTech, E.U. Politecnica, c/ Atarazana 2, 44003, Teruel, Spain 
b Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain 
c EFYPAF, Facultad de Ciencias Sociales y Humanas, c/ Atarazana 2, 44003, Teruel, Spain 

Corresponding author.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 8
Iconographies 7
Vidéos 0
Autres 0

Abstract

Background

Dedicated devices like GT3X+, Actical or ActivPal have been widely used to measure physical activity (PA) levels by using cut-points on activity counts. However, the calculation of activity counts relies on proprietary software. Since smartphones incorporate accelerometers they are suitable candidates to determine PA levels in a wider population.

Objective

Our aim was to compare several algorithms so that smartphones can reproduce the results obtained with GT3X+. The influence of smartphone location was also investigated.

Methods

Volunteers participated in the experiment performing several activities carrying two smartphones (hip and pocket) and one GT3X+ (hip). Four algorithms (A1–A4) were considered to obtain GT3X+ counts from smartphone accelerometer signals. A1 was based on a traditional filtering on temporal domain and a posterior calculation of the area under the curve. A2 was based on computing histograms of acceleration values, which were used as independent variables in a standard linear regression procedure. A3 also used a linear regression, but in this case the independent variables were power spectrum bands, leading to a kind of filtering in the frequency domain. A4 was based on a direct measure of area under the rectified curve of the raw accelerometer signal. Performance was measured in terms of raw activity counts or the corresponding PA level classification. The influence of the algorithm was tested with a Quade test. Multiple comparisons were performed with Wilcoxon test with Bonferroni's correction. Besides, battery consumption was also measured as a secondary parameter. The output of the selected algorithm was compared with GT3X+ counts using correlation (pearson and spearman) and agreement (Intra-Class Coefficient, ICC and Bland–Altmann plots for raw counts, and weighted kappa for activity levels). Several experimental conditions regarding smartphone location were compared with Wilcoxon tests.

Results

Thirty-two volunteers participated in the experiment. More refined algorithms based on filtering techniques did not prove to achieve better performance than A2 or A4. In terms of classification of PA level, A4 got the lowest error rate, although in some cases the differences with other algorithms were not statistically significant (p-value > 0.05). A4 is also the simplest and the one that implies less battery depletion. The comparison of A4 with GT3X+ gave good agreement ( ) and correlation ( ) for raw counts and good agreement when classifying four or two PA levels (  or 0.923 respectively). Besides, in real situations, activity classification into four levels was significantly improved ( ) if data from several body locations were used to find model parameters.

Conclusions

Simple algorithms can reproduce the results of GT3X+. Thus, smartphones could be used to control the fulfillment of PA recommendations previously validated with cut-points. However, it must be acknowledged that accelerometers are not the gold standard to measure PA.

Le texte complet de cet article est disponible en PDF.

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

Four algorithms to get GT3X+ activity counts from accelerometer signals are compared.
The area under the rectified curve shows a strong linear relation with counts.
Other algorithms with more elaborate filtering do not achieve better results.
Obtaining the area under the rectified curve leads to the lower power consumption.
Smartphones could be used to test fulfillment of physical activity recommendations.

Le texte complet de cet article est disponible en PDF.

Keywords : Accelerometer, Physical activity, mHealth, Actigraph


Plan


© 2018  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 40 - N° 2

P. 95-102 - mars 2019 Retour au numéro
Article précédent Article précédent
  • Identification of the Pain Process by Cold Stimulation: Using Dynamic Causal Modeling of Effective Connectivity in Functional Near-Infrared Spectroscopy (fNIRS)
  • H. Sharini, M. Fooladi, S. Masjoodi, M. Jalalvandi, M. Yousef Pour
| Article suivant Article suivant
  • Detection of Seizure Event and Its Onset/Offset Using Orthonormal Triadic Wavelet Based Features
  • G. Chandel, P. Upadhyaya, O. Farooq, Y.U. Khan

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.