Médecine

Paramédical

Autres domaines


S'abonner

Optimization approach to retrieve soil surface parameters from single-acquisition single-configuration SAR data - 20/03/19

Doi : 10.1016/j.crte.2018.11.005 
Arsalan Ghorbanian, Mahmod Reza Sahebi , Ali Mohammadzadeh
 Photogrammetry and Remote Sensing Department, Faculty of Geodesy and Geomatics Engineering and Remote Sensing Institute, K. N. Toosi University of Technology, Tehran, Iran 

Corresponding author.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le mercredi 20 mars 2019
Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder

Handled by Isabelle Manighetti

Abstract

This study suggests a novel approach to the retrieval of soil surface parameters using a single-acquisition single-configuration synthetic-aperture radar (SAR) system. Soil surface parameters such as soil moisture and surface roughness are key elements for many environmental studies, including Earth surface water cycles, energy exchange, agriculture, and geology. Remote sensing techniques, especially SAR data, are commonly used to retrieve such soil surface parameters over large areas. Several backscattering models have been proposed for soil surface parameters retrieval from SAR data. However, commonly, these backscattering models require multi configuration SAR data, including multi-polarization, multi-frequency, and multi-incidence angle. Here we propose a methodology that employs single-acquisition single-configuration SAR data for the retrieval of soil surface parameters. The originality is to use single-acquisition single-configuration SAR data to retrieve the soil surface parameters using an optimization approach by the genetic algorithm (GA); we have used the modified Dubois model (MDM) in HH polarization as the backscattering model. Three HH polarization and C band data sets from Quebec (Radarsat-1), Ontario (SIR-C), and Oklahoma (AIRSAR) were analyzed. The retrieved values of soil moisture and soil surface roughness were then compared to ground truth measurements with corresponding parameters. We employed diverse criteria, including the mean absolute error (MAE), the root mean square error (RMSE), the coefficient of performance (CP), and the correlation coefficient to investigate the performance of the proposed methodology. This analysis suggests the capability of the GA for the retrieval of soil surface parameters. Based on our findings, this method presents a viable alternative approach to the retrieval of soil surface parameters when only single-acquisition single-configuration SAR data is available.

Le texte complet de cet article est disponible en PDF.

Keywords : Soil moisture, Soil surface roughness, SAR, Optimization, Genetic algorithm


Plan


© 2019  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.