Médecine

Paramédical

Autres domaines


S'abonner

A three field stabilized finite element method for the Stokes equations - 22/03/08

Mohamed Amara a , Eliseo Chacón Vera b , David Trujillo a
a IPRA-LMA, Université de Pau et des Pay de l'Adour, 64000 Pau, France 
b Departamento de ecuaciones diferenciales y analysis, Universidad de Sevilla, 41080 Sevilla, Spain 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 0
Vidéos 0
Autres 0

Note presented by Philippe G. Ciarlet

Abstract

We consider in this work the boundary value problem for Stokes equations on a two dimensional domain in cases where non-standard boundary conditions are given. We study the cases where pressure and normal or tangential components of the velocity are given in different parts of the boundary and solve the problem with a minimal regularity. We introduce the problem and its variational formulation which is a mixed one. The principal unknowns are the pressure and the vorticity, the multiplier is the velocity. We present the numerical discretization which needs some stabilization. We prove the convergence and the behavior of the a priori error estimates. Some numerical tests are also presented. To cite this article: M. Amara et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 603-608.

Le texte complet de cet article est disponible en PDF.

Résumé

On propose dans ce travail, une formulation vitesse-tourbillon-pression pour le problème de Stokes bidimensionnel dans lequel on impose des conditions au bord non standard. On s'intèresse plus précisément aux cas où, sur certaines parties du bord, sont données la pression et la composante tangentielle de la vitesse ou bien le tourbillon et la composante normale de la vitesse. En partant d'une formulation mixte variationnelle le problème est résolu avec des hypothèses minimales sur la régularité. Dans cette formulation, les inconnues principales sont la pression et le tourbillon, tandis que la vitesse joue le rôle du multiplicateur. Nous présentons le problème discrétisé associé, pour lequel nous rajoutons un terme de stabilisation. Un résultat de convergence, décrivant le comportement de l'erreur d'approximation a priori, est démontré. Nous terminons par quelques résultats numériques. Pour citer cet article : M. Amara et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 603-608.

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2002  Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 334 - N° 7

P. 603-608 - 2002 Retour au numéro
Article précédent Article précédent
  • Sur quelques résultats de convergence dans l'inférence d'une classe de processus ponctuels
  • Aboubakary Diakhaby
| Article suivant Article suivant
  • Solutions variationnelles du problème stationnaire des fluides de grade trois
  • Jean-Marie Bernard, El Hacène Ouazar

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.