Médecine

Paramédical

Autres domaines


S'abonner

A Deep Learning Architecture for P300 Detection with Brain-Computer Interface Application - 11/09/19

Doi : 10.1016/j.irbm.2019.08.001 
S. Kundu , S. Ari
 Department of Electronics and Communication Engineering, National Institute of Technology Rourkela, Odisha, 769008, India 

Corresponding author.
Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le mercredi 11 septembre 2019

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

SAE and SSAE architecture is proposed for BCI P300 speller.
In this work, deep features and temporal features are fused together.
EWANN classifier is used for classification.
It provides better and competitive character recognition performance.

Le texte complet de cet article est disponible en PDF.

Abstract

In this paper, a brain-computer interface (BCI) system for character recognition is proposed based on the P300 signal. A P300 speller is used to spell the word or character without any muscle movement. P300 detection is the first step to detect the character from the electroencephalogram (EEG) signal. The character is recognized from the detected P300 signal. In this paper, sparse autoencoder (SAE) and stacked sparse autoencoder (SSAE) based feature extraction methods are proposed for P300 detection. This work also proposes a fusion of deep-features with the temporal features for P300 detection. A SSAE technique extracts high-level information about input data. The combination of SSAE features with the temporal features provides abstract and temporal information about the signal. An ensemble of weighted artificial neural network (EWANN) is proposed for P300 detection to minimize the variation among different classifiers. To provide more importance to the good classifier for final classification, a higher weightage is assigned to the better performing classifier. These weights are calculated from the cross-validation test. The model is tested on two different publicly available datasets, and the proposed method provides better or comparable character recognition performance than the state-of-the-art methods.

Le texte complet de cet article est disponible en PDF.

Keywords : Brain-computer interface, Deep learning, P300, Sparse autoencoder, Stacked sparse autoencoder


Plan


© 2019  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.