Médecine

Paramédical

Autres domaines


S'abonner

Classification of Different Tympanic Membrane Conditions Using Fused Deep Hypercolumn Features and Bidirectional LSTM - 12/01/21

Doi : 10.1016/j.irbm.2021.01.001 
M. Uçar a, K. Akyol b, Ü. Atila c , E. Uçar a
a Department of Management Information Systems, Faculty of Business and Management Science, Iskenderun Technical University, Hatay, Turkey 
b Department of Computer Engineering, Faculty of Engineering, Kastamonu University, Kastamonu, Turkey 
c Department of Computer Engineering, Faculty of Engineering, Karabuk University, Karabuk, Turkey 

Sous presse. Manuscrit accepté. Disponible en ligne depuis le Tuesday 12 January 2021
Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder

Graphical abstract

Le texte complet de cet article est disponible en PDF.

Highlights

A novel deep learning model for classification of tympanic membrane conditions.
Hypercolumn deep features extracted from keypoints in otoscopy images.
Bidirectional LSTM trained by deep features in the form of non-time related data.
Obtained average accuracy of 99.06% for 4 different classes of tympanic membrane.
Proposed model can assist the otolaryngologist to make accurate diagnosis.

Le texte complet de cet article est disponible en PDF.

Abstract

Objectives: Middle ear inflammatory diseases are global health problem that can have serious consequences such as hearing loss and speech disorders. The high cost of medical devices such as oto-endoscope and oto-microscope used by the specialists for the diagnosis of the disease prevents its widespread use. In addition, the decisions of otolaryngologists may differ due to the subjective visual examinations. For this reason, computer-aided middle ear disease diagnosis systems are needed to eliminate subjective diagnosis and high cost problems. To this aim, a hybrid deep learning approach was proposed for automatic recognition of different tympanic membrane conditions such as earwax plug, myringosclerosis, chronic otitis media and normal from the otoscopy images.

Materials and methods: In this study we used public Ear Imagery dataset containing 880 otoscopy images. The proposed approach detects keypoints from the otoscopy images and following the obtained keypoint positions, extracts hypercolumn deep features from 5 different layers of the VGG 16 model. Classification of tympanic membrane conditions were realized by feeding the deep hypercolumn features to Bi-LSTM network in the form of non-time related data.

Results: The performance of the proposed model was evaluated in three different color spaces as Red-Green-Blue (RGB), Hue-Saturation-Value (HSV) and Haematoxylin-Eosin-Diaminobenzidine (HED). The proposed model achieved acceptable results in all color spaces, moreover it showed a very successful performance in classifying tympanic membrane conditions especially in RGB space. Experimental studies showed that the proposed model achieved Acc of 99.06%, Sen of 98.13% and Spe of 99.38%.

Conclusion: As a result, a robust model with high sensitivity was obtained for classification of tympanic membrane conditions and it was shown that Bi-LSTM network, which is generally used with time-related data, could also be used successfully with non-time related data for diagnosis of tympanic membrane conditions.

Le texte complet de cet article est disponible en PDF.

Keywords : Tympanic membrane, Bidirectional LSTM, Deep learning, Hypercolumn features, Keypoint detection


Plan


© 2021  AGBM. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.