Physio-mechanical and Biological Effects Due to Surface Area Modifications of 3D Printed β-tri- calcium phosphate: An In Vitro Study - 21/08/22

Doi : 10.1016/j.stlm.2022.100078 
Leticia Arbex a, Vasudev Vivekanand Nayak a, b, John L. Ricci a, c, Dindo Mijares a, c, James E. Smay d, Paulo G. Coelho a, b, c, e, Lukasz Witek a, c, f,
a Division of Biomaterials, New York University College of Dentistry, New York, NY 
b Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 
c Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 
d School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 
e Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY 
f Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 

Corresponding Author: Lukasz Witek, New York University College of Dentistry, Division of Biomaterials, 433 1st Ave, Room 842, New York, NYNew York University College of DentistryDivision of Biomaterials433 1st Ave, Room 842New YorkNY

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Sous presse. Manuscrit accepté. Disponible en ligne depuis le Sunday 21 August 2022
Cet article a été publié dans un numéro de la revue, cliquez ici pour y accéder

Abstract

Bone defects are commonly associated with trauma, congenital disorders, non-unions, and infections following surgical procedures. Defects which are unable to heal spontaneously are categorized as “critical sized” and are treated using bone grafts to facilitate the bone regeneration and/or stabilization. Grafting materials can be natural or synthetic, each having their respective advantages and disadvantages. Synthetic bone grafts are favored due to their ability to be tailored to exhibit desired properties and geometric configurations. β-tricalcium phosphate (β-TCP), a synthetic grafting material, has been widely utilized for regenerative purposes due to its osteoconductive properties. In combination with 3D printing, grafts can be further customized with respect to their macro and micro features. One way to customize devices using 3D printing is by varying the surface area, by varying the internal component measurements. The objective of this study was to compare the effect of variations on the porosity and surface area of 3D printed β-TCP scaffolds with different strut diameters and the effect on cell proliferation in vitro. ß-TCP scaffolds were printed using a custom-built 3D direct-write micro printer with syringes equipped with different extrusion tips (fdiameter: 200 µm, 250 µm and 330 µm). After sintering and post processing, scaffolds were subjected to micro-computed tomography (µCT) and a Scanning Electron Microscope (SEM) to evaluate surface area and porosity respectively. Compressive strength was assessed using a universal testing machine. Cell proliferation was assessed through cellular viability, using human osteoprogenitor cells. The surface area of the scaffolds was found to increase with the smaller strut diameters. Statistically significant differences (p<0.05) were detected for cellular proliferation, between the smallest extrusion diameter, 200 μm, and the largest diameter, 330 μm, after 48-, 72-, and 168-hours. No statistical significances were detected (p>0.05) with regards to the mechanical properties between groups. This study demonstrated that a smaller diameter rod yielded a higher surface area resulting in increased levels of cellular proliferation. Therefore, tailoring rod dimensions has the capacity to enhance cellular adhesion and ultimately, proliferation.

Le texte complet de cet article est disponible en PDF.

Keywords : bone tissue engineering, 3D printing, scaffold, biomaterials


Plan


© 2022  Publié par Elsevier Masson SAS.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.