S'abonner

Experimental investigation of the risk of lateral cortex fracture during valgus tibial osteotomy - 25/11/22

Doi : 10.1016/j.otsr.2022.103428 
Alexandre Didier a, b, Henri Favreau a, Matthieu Ollivier c, Hamdi Jmal b, François Bonnomet a, Nadia Bahlouli b, Pierre Martz d, e, Matthieu Ehlinger a, b,
a Service de chirurgie orthopédique et de traumatologie, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 1, avenue Molière, 67098 Strasbourg cedex, France 
b Laboratoire ICube, CNRS UMR 7357, 2-4, rue Boussingault, 67000, France 
c CNRS, ISM, département de chirurgie orthopédique et traumatologie de chirurgie orthopédique, hôpital Sainte-Marguerite, Institut de la Locomotion, Aix-Marseille université, AP–HM, Marseille, France 
d Service d’orthopédie traumatologie, CHU Dijon, 14, rue Paul-Gaffarel, 21000 Dijon, France 
e Unité Inserm UMR CAPS U1093. UFR STAPS, Campus universitaire, BP 27877, 21078 Dijon cedex, France 

Corresponding author. Service de chirurgie orthopédique et de traumatologie, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 1, avenue Molière, 67098 Strasbourg cedex, France.Service de chirurgie orthopédique et de traumatologie, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg1, avenue MolièreStrasbourg cedex67098France

Abstract

Background

Valgus-producing medial opening-wedge proximal tibial osteotomies (V-MOW-PTO) are used to treat isolated medial-compartment knee osteoarthritis in patients with varus malalignment. A fracture of the lateral cortical hinge is a risk factor for poor outcomes. Implantation of a protective K-wire has been suggested to prevent this complication. The primary objective of this bench study was to assess the ability of a protective K-wire to prevent lateral cortical fractures. The secondary objective was to evaluate the influence of the opening speed on fracture risk during the osteotomy.

Hypothesis

The primary hypothesis was that a protective K-wire decreased the risk of hinge fracture. The secondary hypothesis was that this risk was greater when the opening speed was high.

Materials and methods

We performed an experimental study of 20 simulated thermoplastic-polymer (ABS) tibias obtained by 3D printing to assess the effects of wedge-opening speed (high vs. low) and presence of a protective K-wire (yes vs. no). The opening rates were determined in a preliminary study of Sawbone® specimens opened using a distractor. The opening rate was measured using an accelerometer via a motion-capture glove. After assessing several high and low opening speeds, we selected 38mm/min and 152mm/min for the study. We divided the 20 ABS specimens into four groups of five each: high speed and K-wire, low speed and K-wire, high speed and no K-wire, and low speed and no K-wire. The force was applied using an Instron™ testing machine until construct failure. The primary outcome measure was the load at failure (N) and the secondary outcome measures were the displacement (mm) and maximum time to failure (s).

Results

At both speeds, values were significantly higher with vs. without a K-wire for load to failure (low: 253.3N vs. 175.5N, p<0.01; high: 262.2N vs. 154.1N, p<0.01), displacement (low: 11.1mm vs. 8.7mm, p<0.01; high: 11mm vs. 8.9mm; p=0.012), and maximal time to failure (low: 11.4 s vs. 8.9 s; p=0.012; high: 2.2 s vs. 1.8 s; p=0.011). Thus, the osteotomy opening speed seemed to have no influence on the risk of lateral cortex fracture.

Discussion

Our main hypothesis was confirmed but our secondary hypothesis was refuted: a protective K-wire significantly decreased the risk of hinge fracture, whereas the osteotomy opening speed had no influence. To our knowledge, this is the first published study assessing the potential influence of opening speed on risk of lateral cortex fracture. Our findings were obtained in the laboratory and should be evaluated in clinical practice.

Level of evidence

IV, experimental study.

Le texte complet de cet article est disponible en PDF.

Keywords : Proximal tibial osteotomy, Lateral cortex fracture, Hinge fracture, Load to failure, Biomechanical study


Plan


© 2022  Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 108 - N° 8

Article 103428- décembre 2022 Retour au numéro
Article précédent Article précédent
  • Effect of screw tunnels on proximal femur strength after screw removal: A finite element analysis
  • Yu Zhang, An-An Li, Jia-Ming Liu, Wei-Lai Tong, Shi-Ning Xiao, Zhi-Li Liu
| Article suivant Article suivant
  • K-wire pullout strength in hand surgery: Impact of diameter, threading length and drilling speed
  • Louisa Tamiti, Sandrine Braymand, Nadia Bahlouli, Sybille Facca, Marie Cécile Sapa, Philippe Liverneaux

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.