Biomechanical comparison of traditional plaster cast and 3D-printed orthosis for external coaptation of distal radius fractures - 22/02/24

Doi : 10.1016/j.stlm.2024.100146 
Marcelo P. D'Amado , João Bourbon de Albuquerque, Will Bezold, Brett D. Crist, James L. Cook
 University of Missouri, Columbia 

Corresponding author at: Centro Brasileiro de Ortopedia e Traumatologia (Brazilian Center of Orthopaedic and Trauma Surgery), Alameda Grajaú, 98 - 18° Andar - Alphaville Industrial, Barueri, SP, Brazil.Centro Brasileiro de Ortopedia e Traumatologia (Brazilian Center of Orthopaedic and Trauma Surgery)Alameda Grajaú, 98 - 18° Andar - Alphaville IndustrialBarueriSPBrazil

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Highlights

3D-printed Polylactic Acid short-arm orthoses were associated with superior biomechanical properties when compared to plaster of Paris short-arm casts designed for external immobilization of distal radial fractures.
3D-printed PLA orthoses may offer a viable alternative for the conservative treatment of distal radius fracures offering a better patient experience during treatment.
PLA 3D-Braces may effectively maintain distal radius fracture alignment and stability with potential advantages over traditional casts with respect to biomechanical properties.
Further clinical studies are needed to asses other important factors like patient comfort and cost.

Le texte complet de cet article est disponible en PDF.

Abstract

Introduction

Distal radius fractures make up around 20% of adult fractures, varying in type and severity, thus requiring different treatments. Cast immobilization is effective in indicated fractures, but is associated with several disadvantages such that 3D-printed orthoses (3D-Braces) have been introduced as a potentially advantageous alternative. The present study was designed to test the hypothesis that short-arm 3D-printed Polylactic Acid (PLA) orthoses would provide superior biomechanical properties when compared to plaster of Paris short-arm casts for immobilization of distal radial fractures.

Methods

Modified mannequin forearms were utilized as human models for the creation of both the circular casts and the 3D Braces. A total of five plaster cast prototypes were produced, based on a standard cylindrical plaster cast application technique used in the treatment of distal radius fractures, and another five samples were 3D printed braces. Each sample was then subjected to a three-point bend load test, using an Instron 68SC2 testing machine, and the data was collected and exported to an Excel spreadsheet and analyzed using SPSS Statistics version 26 (IBM Corp., Armonk, N.Y., USA).

Results

The 3D-Braces can withstand significantly higher forces at yield and maximum force, implying they may offer superior mechanical stability. Moreover, our findings indicated a higher strain at yield for the 3D-Braces compared to conventional plaster casts.

Conclusions

3D-printed Polylactic Acid short-arm orthoses demonstrated superior biomechanical properties when compared to plaster of Paris short-arm casts designed for immobilization of distal radial fractures. Taken together with data from previous studies, preclinical evidence suggests that PLA 3D-Braces can effectively maintain distal radius fracture alignment and stability with potential advantages over traditional casts with respect to biomechanical properties as well as post-fabrication adjustment, patient hygiene, comfort, and daily activities.

Le texte complet de cet article est disponible en PDF.

Keywords : 3D printing, Cast, Distal radius fracture, 3D printed orthosis, Fracture, Nonoperative, Conservative treatment


Plan


 The work was performed at Thompson Laboratory for Regenerative Orthopaedics - Missouri Orthopaedic Institute - University of Missouri, Department of Orthopaedic Surgery - Columbia, MO – USA


© 2024  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 14

Article 100146- mai 2024 Retour au numéro
Article précédent Article précédent
  • 3D-printed Biphasic Calcium Phosphate Scaffold to augment cytocompatibility evaluation for load-bearing implant applications
  • K. Prem Ananth, Naidu Dhanpal Jayram, Kandasamy Muthusamy
| Article suivant Article suivant
  • Applications of 3D printing in medicine: A review
  • Chensong Dong, Marko Petrovic, Ian J. Davies

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.