Multi-omics analysis of druggable genes to facilitate Alzheimer's disease therapy: A multi-cohort machine learning study - 12/03/25

Doi : 10.1016/j.tjpad.2025.100128 
Jichang Hu , Yong Luo, Xiaochuan Wang
 Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 

Corresponding authors at: Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders Tongji Medical College, Huazhong University of Science and Technology Wuhan China.Department of Pathophysiology School of Basic Medicine Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China

Bienvenue sur EM-consulte, la référence des professionnels de santé.
Article gratuit.

Connectez-vous pour en bénéficier!

Sous presse. Épreuves corrigées par l'auteur. Disponible en ligne depuis le Wednesday 12 March 2025

Abstract

Background

The swift rise in the prevalence of Alzheimer's disease (AD) alongside its significant societal and economic impact has created a pressing demand for effective interventions and treatments. However, there are no available treatments that can modify the progression of the disease.

Methods

Eight AD brain tissues datasets and three blood datasets were obtained. Consensus clustering was utilized as a method to discern the various subtypes of AD. Then, module genes were screened using weighted correlation network analysis (WGCNA). Furthermore, screening hub genes was conducted through machine-learning analyses. Finally, A comprehensive analysis using a systematic approach to druggable genome-wide Mendelian randomization (MR) was conducted.

Results

Two AD subclasses were identified, namely cluster.A and cluster.B. The levels of gamma secretase activity, beta secretase activity, and amyloid-beta 42 were found to be significantly elevated in patients classified within cluster A when compared to those in cluster B. Furthermore, by utilizing the differentially expressed genes shared among these clusters, along with identifying druggable genes and applying WGCNA to these subtypes, we were able to develop a scoring system referred to as DG.score. This scoring system has demonstrated remarkable predictive capability for AD when evaluated against multiple datasets. Besides, A total of 30 distinct genes that may serve as potential drug targets for AD were identified across at least one of the datasets investigated, whether derived from brain samples or blood analyses. Among the identified genes, three specific candidates that are considered druggable (LIMK2, MAPK8, and NDUFV2) demonstrated significant expression levels in both blood and brain tissues. Furthermore, our research also revealed a potential association between the levels of LIMK2 and concentrations of CSF Aβ (OR 1.526 (1.155–2.018)), CSF p-tau (OR 1.106 (1.024–01.196)), and hippocampal size (OR 0.831 (0.702–0.948)).

Conclusions

This study provides a notable advancement to the existing literature by offering genetic evidence that underscores the potential therapeutic advantages of focusing on the druggable gene LIMK2 in the treatment of AD. This insight not only contributes to our understanding of AD but also guides future drug discovery efforts.

Le texte complet de cet article est disponible en PDF.

Keywords : Alzheimer's disease, Machine learning, WGCNA, Mendelian randomization


Plan


© 2025  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Bienvenue sur EM-consulte, la référence des professionnels de santé.

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.