S'abonner

Enhancing Alzheimer's disease prediction using random forest: A novel framework combining backward feature elimination and ant colony optimization - 05/07/25

Doi : 10.1016/j.retram.2025.103526 
Afeez A. Soladoye a, Nicholas Aderinto b, Bolaji A. Omodunbi a, Adebimpe O. Esan a, Ibrahim A. Adeyanju a, David B. Olawade c, d, e, f,
a Department of Computer Engineering, Federal University, Oye-Ekiti, Nigeria 
b Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria 
c Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom 
d Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom 
e Department of Public Health, York St John University, London, United Kingdom 
f School of Health and Care Management, Arden University, Arden House, Middlemarch Park, Coventry, CV3 4FJ, United Kingdom 

Corresponding author.

Highlights

Backward Elimination with Ant Colony Optimization achieved 95% accuracy in prediction
26 significant features identified as key predictors for Alzheimer's disease
Swarm intelligence algorithms reduced computation time by 81% versus empirical methods
Random Forest hyperparameter optimization improved performance across all metrics
Framework outperformed conventional machine learning algorithms including XGBoost

Le texte complet de cet article est disponible en PDF.

Abstract

Background

Alzheimer's disease (AD) represents a significant global health challenge due to its increasing prevalence and the limitations of current diagnostic approaches. Early detection is crucial as pathological changes occur 10-15 years before clinical symptoms manifest, yet current diagnostic methods typically identify the disease at moderate to advanced stages. Machine learning techniques offer promising solutions for early prediction, but face challenges related to feature selection and hyperparameter optimization.

Objective

To develop an enhanced predictive model for Alzheimer's disease by integrating advanced feature selection techniques with nature-inspired hyperparameter optimization for Random Forest classifiers while ensuring robust validation and statistical significance testing.

Methods

This study employed three feature selection techniques (Whale Optimization Algorithm, Artificial Bee Colony, and Backward Elimination Feature Selection) and two hyperparameter optimization algorithms (Artificial Ant Colony Optimization and Bald Eagle Search) to improve Random Forest model performance. A dataset comprising 2,149 instances with 34 features was preprocessed using MinMax normalization and Synthetic Minority Oversampling Technique (SMOTE) applied only to training data to prevent data leakage. Statistical significance testing using McNemar's test was conducted to compare model performances. Model performance was evaluated using accuracy, precision, recall, F1-score, and AUC with confidence intervals calculated using bootstrap sampling.

Results

The combination of Backward Elimination Feature Selection with Artificial Ant Colony Optimization achieved the highest performance (95% accuracy ± 1.2%, 95% precision ± 1.1%, 94% recall ± 1.3%, 95% F1-score ± 1.0%, 98% AUC ± 0.8%), outperforming other methodological combinations and conventional machine learning algorithms with statistically significant improvements (p < 0.001). This approach identified 26 significant features associated with Alzheimer's disease. Additionally, nature-inspired optimization algorithms demonstrated substantial computational efficiency advantages over empirical approaches (18 minutes versus 133 minutes).

Conclusion

The integration of advanced feature selection with nature-inspired hyperparameter optimization enhances Alzheimer's disease prediction accuracy while improving computational efficiency. However, external validation on independent datasets and prospective clinical studies are needed to establish real-world utility. This methodological framework offers promising applications for early diagnosis and intervention planning, with potential extensions to other complex medical prediction tasks.

Le texte complet de cet article est disponible en PDF.

Keywords : Alzheimer's disease, Machine learning, Feature selection, Nature-inspired optimization, Random forest


Plan


© 2025  The Author(s). Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 73 - N° 4

Article 103526- décembre 2025 Retour au numéro
Article précédent Article précédent
  • Assessment of pre- and post-transplant concentrations of citrulline, zonulin, and calprotectin in children undergoing allogeneic hematopoietic cell transplantation
  • Pejman Rohani, Faezeh Tejareh, Amir Ali Hamidieh, Maryam Behfar, Mohammad Hassan Sohouli

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2025 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.