Médecine

Paramédical

Autres domaines


S'abonner

On the fundamental theorem of surface theory under weak regularity assumptions - 01/01/03

Doi : 10.1016/j.crma.2003.10.027 

Sorin  Mardare

Voir les affiliations

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

pages 6
Iconographies 0
Vidéos 0
Autres 0

Résumé

We consider a symmetric, positive definite matrix field of order two and a symmetric matrix field of order two that together satisfy the Gauss and Codazzi-Mainardi equations in a connected and simply connected open subset of  . If these fields are of class   and   respectively, the fundamental theorem of surface theory asserts that there exists a surface immersed in the three-dimensional Euclidean space with the given matrix fields as its first and second fundamental forms. The purpose of this Note is to prove that this theorem still holds true under the weaker regularity assumptions that these fields are of class   and   respectively, the Gauss and Codazzi-Mainardi equations being then understood in a distributional sense. To cite this article: S. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).

Résumé

On considère un champ de matrices symétriques définies positives d'ordre deux et un champ de matrices symétriques d'ordre deux qui satisfont ensemble les équations de Gauss et de Codazzi-Mainardi dans un ouvert connexe et simplement connexe de  . Si ces champs sont respectivement de classe   et  , alors le théorème fondamental de la théorie des surfaces affirme qu'il existe une surface plongée dans l'espace Euclidean tridimensionnel dont ces champs sont les première et deuxième formes fondamentales. L'objet de cette Note est d'établir que ce théorème reste vrai sous les hypothèses de régularités affaiblies selon lesquelles ces champs sont respectivement de classe   et  , les équations the Gauss et de Codazzi-Mainardi étant alors satisfaites aux sens des distributions. Pour citer cet article : S. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).

Plan



© 2003  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 338 - N° 1

P. 71-76 - janvier 2004 Retour au numéro

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement ou un achat à l’unité.

L'accès au texte intégral de cet article nécessite un abonnement ou un achat à l'unité.

Déjà abonné à cette revue ?

;

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.