Médecine

Paramédical

Autres domaines


S'abonner

Minoration de rangs de courbes elliptiques - 14/01/09

Doi : 10.1016/j.crma.2008.10.016 
Nicolas Templier
Institute for Advanced Study, Princeton, NJ 08540, États-Unis 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 6
Iconographies 0
Vidéos 0
Autres 0

Résumé

Nous énonçons dans cette Note un résultat quantitatif concernant le groupe des points rationnels d’une courbe elliptique qui sont définis sur certains corps de classes de Hilbert. Il s’agit d’établir une borne inférieure pour le rang. Nous présentons également une approche analytique qui se fonde sur l’estimation de sommes de coefficients d’une forme modulaire aux valeurs d’un polynôme quadratique. Cette estimée est une version non scindée d’un problème de convolution décalée. Pour citer cet article : N. Templier, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Le texte complet de cet article est disponible en PDF.

Abstract

We state a quantitative result concerning the group of rational points on an elliptic curve that are defined over certain Hilbert class fields. We provide a lower bound for the rank. We present also an analytic approach based on the proof of an estimate for sums of Fourier coefficients of a modular form along values taken by a quadratic polynomial. This estimate is a non-split version of the shifted convolution problem. To cite this article: N. Templier, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2008  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 346 - N° 23-24

P. 1225-1230 - décembre 2008 Retour au numéro
Article précédent Article précédent
  • Problème de Lehmer et variétés abéliennes CM
  • María Carrizosa
| Article suivant Article suivant
  • Sharp weighted Hardy type inequalities and Hardy–Sobolev type inequalities on polarizable Carnot groups
  • Jialin Wang, Pengcheng Niu

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.