Médecine

Paramédical

Autres domaines


S'abonner

Multiplicative Dirac structures on Lie groups - 14/01/09

Doi : 10.1016/j.crma.2008.10.003 
Cristián Ortiz 1
Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, Rio de Janeiro 22460-320, Brazil 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Abstract

We study multiplicative Dirac structures on Lie groups. We show that the characteristic foliation of a multiplicative Dirac structure is given by the cosets of a normal Lie subgroup and, whenever this subgroup is closed, the leaf space inherits the structure of a Poisson–Lie group. We also describe multiplicative Dirac structures on Lie groups infinitesimally. To cite this article: C. Ortiz, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Le texte complet de cet article est disponible en PDF.

Résumé

Nous étudions les structures de Dirac multiplicatives sur les groupes de Lie. On montre que le feuilletage caractéristique d’une structure de Dirac multiplicative est donnée par les classes à gauche (respectivement à droite) d’un sous-groupe distingué et, quand ce sous-groupe est fermé, l’espace des feuilles est muni d’une structure de groupe de Lie–Poisson. Nous décrivons aussi la version infinitésimale des structures de Dirac multiplicatives sur les groupes de Lie. Pour citer cet article : C. Ortiz, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2008  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 346 - N° 23-24

P. 1279-1282 - décembre 2008 Retour au numéro
Article précédent Article précédent
  • A congruence theorem for minimal surfaces in with constant contact angle
  • Rodrigo Ristow Montes
| Article suivant Article suivant
  • Rang et courbure de Blaschke des tissus holomorphes réguliers de codimension un
  • Vincent Cavalier, Daniel Lehmann

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.